Purpose: Pathological assessment using World Health Organization (WHO) criteria is the gold standard for diagnosis of gliomas. However, the accuracy of diagnosis is limited by tissue sampling, particularly for infiltrating, heterogeneous tumours. We assessed the accuracy of amide proton transfer-weighted (APTw) magnetic resonance imaging (MRI)-guided tissue sampling to identify regions of high-grade glioma via radiographic-histopathologic correlation in patients with newly suspected glioma.

Patients And Methods: Twenty-four patients with previously undiagnosed gliomas underwent a volumetric APTw MRI prior to their first neurosurgical procedure. A total of 70 specimens were collected via APTw image-directed stereotactic biopsy. Cellularity, necrosis, proliferation and glioma WHO grade were analysed for all specimens and correlated with corresponding APTw signal intensities.

Results: Thirty-three specimens displayed grade-II pathology, 14 grade-III, 15 grade-IV, and eight specimens revealed only peritumoural oedema. Multiple glioma grades were found within a single lesion in six patients. APTw signal intensities of the biopsied sites and the maximum APTw values across all biopsied sites in each patient were significantly higher for high-grade versus low-grade specimens. APTw signal intensities were significantly positively correlated with cellularity (R = 0.757) and proliferation (R = 0.538). Multiple linear regression analysis showed that tumour cellularity and proliferation index were the best predictors of APTw signal intensities.

Conclusion: APTw imaging identified tumour areas of higher cellularity and proliferation, allowing identification of high-grade regions within heterogeneous gliomas. APTw imaging can be readily translated for more widespread use and can assist diagnostic neurosurgical procedures by increasing the accuracy of tumour sampling in patients with infiltrating gliomas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572540PMC
http://dx.doi.org/10.1016/j.ejca.2017.06.009DOI Listing

Publication Analysis

Top Keywords

aptw signal
16
aptw
10
amide proton
8
proton transfer-weighted
8
magnetic resonance
8
stereotactic biopsy
8
patients newly
8
tissue sampling
8
signal intensities
8
biopsied sites
8

Similar Publications

Diagnostic performance of multiparametric nonenhanced magnetic resonance imaging (MRI) in grading glioma and correlating IDH mutation status.

Clin Radiol

December 2024

Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, China. Electronic address:

Aim: To evaluate the diagnostic performance of nonenhanced magnetic resonance imaging (MRI) in grading glioma and correlating isocitrate dehydrogenase (IDH) mutation status.

Materials And Methods: Patients with diagnoses confirmed by postoperative pathology were enrolled. Quantitative parameters, including the relative amide proton transfer-weighted (rAPTW), relative cerebral blood flow (CBF), and apparent diffusion coefficient (ADC) were applied to grade gliomas and correlate IDH mutation status.

View Article and Find Full Text PDF

Amide proton transfer-weighted (APTw) imaging and derived quantitative metrics in evaluating gliomas: Improved performance compared to magnetization transfer ratio asymmetry (MTR).

Acad Radiol

January 2025

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.Z., Y.L., Y.L., Y.D., N.S., Y.X., S.Y., Y.F., J.Z., D.L., L.L., W.Z.). Electronic address:

Rationale And Objectives: Isocitrate dehydrogenase (IDH) status, glioma subtypes and tumor proliferation are important for glioma evaluation. We comprehensively compare the diagnostic performance of amide proton transfer-weighted (APTw) MRI and its related metrics in glioma diagnosis, in the context of the latest classification.

Materials And Methods: Totally 110 patients with adult-type diffuse gliomas underwent APTw imaging.

View Article and Find Full Text PDF

Differentiating Glioma Recurrence and Pseudoprogression by APTw CEST MRI.

Invest Radiol

December 2024

From the Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany (K.K.-J., N.E., E.G., K.S., J.U., H.F.-P., D.S., V.S., J.M.K., I.P., S.H., M.B., M.O.B.); Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany (K.K.-J., F.W., W.W.); Department of Neurology, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), Heidelberg, Germany (D.B., F.M.I., F.W., W.W.); DKTK, DKFZ, Clinical Cooperation Unit Neuropathology, Heidelberg, Germany (F.M.I.); Division of Radiology, DKFZ, Heidelberg, Germany (N.V., D.P.); Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKTK, DKFZ, Heidelberg, Germany (L.B., M.P., M.O.B.); Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany (L.B., M.P.); Division of Neuroradiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.P.); and Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany (D.P.).

Objectives: Recurrent glioma is highly treatment resistant due to its metabolic, cellular, and molecular heterogeneity and invasiveness. Tumor monitoring by conventional MRI has shortcomings to assess these key glioma characteristics. Recent studies introduced chemical exchange saturation transfer for metabolic imaging in oncology and assessed its diagnostic value for newly diagnosed glioma.

View Article and Find Full Text PDF

Amide Proton Transfer-weighted (APTw) imaging is a molecular MRI technique used to quantify protein concentrations in gliomas, which have heterogeneous components with varying cellularity and metabolic activity. This study aimed to assess the correlation between the component-specific APT signal of the neoplasm and WHO grade, molecular profile and survival status. Sixty-one patients with adult-type diffuse gliomas were retrospectively analyzed.

View Article and Find Full Text PDF
Article Synopsis
  • This study aims to reduce the time needed for Chemical Exchange Saturation Transfer (CEST) imaging by using a method that combines Z-spectrum undersampling with deep learning to create accurate CEST maps.* -
  • The research involved a U-NET neural network trained on data from 18 volunteers to effectively generate CEST maps even from significantly undersampled images, showcasing notable improvements over traditional models.* -
  • Results indicated that the U-NET can reduce scan time by up to 3.5 times while maintaining reliable accuracy in CEST measurements, making it a promising approach for future imaging studies, including those focused on glioblastoma.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!