Paracoccidoides brasiliensis and Paracoccidioides lutzii, the etiologic agents of paracoccidioidomycosis, cause disease in healthy and immunocompromised persons in Latin America. We developed a method for harvesting P. brasiliensis yeast cells from infected murine lung to facilitate in vivo transcriptional and proteomic profiling. P. brasiliensis harvested at 6 h post-infection were analyzed using RNAseq and LC-MS. In vivo yeast cells had 594 differentially expressed transcripts and 350 differentially expressed proteins. Integration of transcriptional and proteomic data indicated that early in infection (6 h), P. brasiliensis yeast cells underwent a shift in metabolism from glycolysis to β-oxidation, upregulated detoxifying enzymes to defend against oxidative stress, and repressed cell wall biosynthesis. Bioinformatics and functional analyses also demonstrated that a serine proteinase was upregulated and secreted in vivo. To our knowledge this is the first study depicting transcriptional and proteomic data of P. brasiliensis yeast cells upon 6 h post-infection of mouse lung.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5711425PMC
http://dx.doi.org/10.1080/21505594.2017.1355660DOI Listing

Publication Analysis

Top Keywords

yeast cells
16
brasiliensis yeast
12
transcriptional proteomic
12
serine proteinase
8
6 h post-infection
8
differentially expressed
8
proteomic data
8
brasiliensis
5
paracoccidioides brasiliensis
4
brasiliensis presents
4

Similar Publications

In silico drug repurposing at the cytoplasmic surface of human aquaporin 1.

PLoS One

January 2025

Genome and Structural Bioinformatics Group, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, Wales, United Kingdom.

Aquaporin 1 (AQP1) is a key channel for water transport in peritoneal dialysis. Inhibition of AQP1 could therefore impair water transport during peritoneal dialysis. It is not known whether inhibition of AQP1 occurs unintentionally due to off-target interactions of administered medications.

View Article and Find Full Text PDF

The SUMO-targeted ubiquitin ligase (STUbL) family is involved in multiple cellular processes via a wide range of mechanisms to maintain genome stability. One of the evolutionarily conserved functions of STUbL is to promote changes in the nuclear positioning of DNA lesions, targeting them to the nuclear periphery. In Schizossacharomyces pombe, the STUbL Slx8 is a regulator of SUMOylated proteins and promotes replication stress tolerance by counteracting the toxicity of SUMO conjugates.

View Article and Find Full Text PDF

The murine hepatitis virus (MHV) is an important model system for studying coronavirus (CoV) molecular and cell biology. Despite this, few reagents for MHV are available through repositories such as ATCC or Addgene, potentially limiting the widespread adoption of MHV as a tractable model system. To overcome some challenges inherent in the existing MHV reverse genetics systems, we developed a plasmid-launched transformation-associated recombination (TAR) cloning-based system to assemble the MHV (strain A59; MHV-A59) genome.

View Article and Find Full Text PDF

Amyloid fibrils are protein polymers noncovalently assembled through β-strands arranged in a cross-β structure. Biological amyloids were considered chemically inert until we and others recently demonstrated their ability to catalyze chemical reactions in vitro. To further explore the functional repertoire of amyloids, we here probe if fibrils of α-synuclein (αS) display chemical reactivity toward DNA.

View Article and Find Full Text PDF

Background: Pathological tau accumulation is the primary constituent of neurofibrillary tangles and other tau aggregates seen in various neurodegenerative diseases collectively known as tauopathies. Recently, immunotherapeutic strategies focused on tau have shown promise in reducing tauopathy in both cellular and animal models.

Method: We previously used humanized yeast models to purify recombinant hyper-phosphorylated human Tau for mouse immunizations and the isolation of a high-affinity anti-Tau monoclonal antibody (mAb) with enhanced diagnostic and prognostic capacities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!