In the present study, we assessed whether the endogenous platelet inhibitory mechanisms are altered in the early to moderate stages of the atherosclerotic process. Apolipoprotein E deficient mice (ApoE-/-), a mouse model of atherosclerosis, and their wild-type (WT) counterparts were used to assess agonist-stimulated synthesis of prostacyclin (PGI), inhibition of platelet aggregation ex vivo, and intra-platelet cAMP levels. Basal U46619 and ADP -induced platelet aggregation in vitro were increased in ApoE-/- mice at 18-20 weeks in comparison with 8-10 weeks of age. Systemically administered endothelin-1 (ET-1) or bradykinin (BK) inhibited platelet aggregation in a similar fashion in 8- to 10-week-old ApoE-/- and WT mice, but not in the ApoE-/- mice at 18-20 weeks of age, although both peptides maintained their capacity to increase plasma levels of the PGI. Intravenous infusion of PGI also failed to inhibit platelet aggregation ex vivo in 18- to 20-week-old ApoE-/- mice. Interestingly, both BK and PGI retained their ability to increase intraplatelet cAMP in WT and ApoE-/- mice. Our results suggest that a loss of activity of endogenous inhibitorymechanisms could contribute to the increased platelet reactivity in ApoE-/- mice, and that this phenomenon occurs early in the intermediate stage of the atherosclerotic process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/cjpp-2017-0314 | DOI Listing |
In Vitro Cell Dev Biol Anim
January 2025
College of Traditional Chinese Medicine, Xinjiang Uygur Autonomous Region, Xinjiang Medical University, Urumqi, 830063, China.
The aim of this study is to assess the impact of Tianxiangdan (TXD) on lipophagy in foam cells and its underlying mechanism in treating atherosclerosis, particularly focusing on its efficacy in lowering blood lipids. In vivo, ApoE-/- atherosclerosis mouse models were established for group intervention. Blood lipid levels of the mice were measured, lipid deposition and autophagy levels in atherosclerotic plaques were assessed, and co-localization of lipid droplets and autophagosomes was examined.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
Adv Sci (Weinh)
January 2025
Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.
Large-scale studies indicate a strong relationship between the gut microbiome, type 2 diabetes mellitus (T2DM), and atherosclerotic cardiovascular disease (ASCVD). Here, a higher abundance of the type III secretion system (T3SS) virulence factors of Enterobacteriaceae/Escherichia-Shigella in patients with T2DM-related-ASCVD, which correlates with their atherosclerotic stenosis is reported. Overexpression of T3SS via Citrobacter rodentium (CR) infection in Apoe-/- T2DM mice exacerbated atherosclerotic lesion formation and increased gut permeability.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China.
The importance of ferroptosis in the occurrence and progression of atherosclerosis is gradually being recognized. The stimulatory G protein α subunit (Gsα) plays a crucial role in the physiology of endothelial cells (ECs). Our previous study showed that endothelial Gsα could regulate angiogenesis and preserve endothelial permeability.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Institute of Basic Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences Beijing 100091, China.
This study aimed to investigate the potential mechanism and the compatibility significance of Tanyu Tongzhi Formula in treating atherosclerosis(AS) in mice based on the transforming growth factor-β(TGF-β)/Smad2/3 signaling pathway. Eight C57BL/6J mice were as assigned to a normal control group and fed a regular diet, while 35 ApoE~(-/-) mice of the same strain were fed a high-fat diet for 8 weeks to establish an AS model. The model mice were randomly divided into a model group, a Tanyu Tongzhi group(18.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!