Objective: Central and peripheral B cell tolerance checkpoints are defective in many patients with autoimmune diseases, but the functionality of each discrete checkpoint has not been assessed in patients with Sjögren's syndrome (SS). We undertook this study to assess this functionality in SS patients.

Methods: Using a polymerase chain reaction-based approach that allows us to clone and express, in vitro, recombinant antibodies produced by single B cells, we tested the reactivity of recombinant antibodies cloned from single CD19+CD21 CD10+IgM CD27- newly emigrant/transitional B cells and CD19+CD21+CD10-IgM+CD27- mature naive B cells from 5 SS patients.

Results: We found that the frequencies of newly emigrant/transitional B cells expressing polyreactive antibodies were significantly increased in SS patients compared to those in healthy donors, revealing defective central B cell tolerance in SS patients. Frequencies of mature naive B cells expressing autoreactive antibodies were also significantly increased in SS patients, thereby illustrating an impaired peripheral B cell tolerance checkpoint in these patients.

Conclusion: Defective counterselection of developing autoreactive B cells observed in SS patients is a feature common to many other autoimmune diseases and may favor the development of autoimmunity by allowing autoreactive B cells to present self antigens to T cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062007PMC
http://dx.doi.org/10.1002/art.40215DOI Listing

Publication Analysis

Top Keywords

cell tolerance
16
tolerance checkpoints
8
sjögren's syndrome
8
peripheral cell
8
autoimmune diseases
8
recombinant antibodies
8
cells
8
newly emigrant/transitional
8
emigrant/transitional cells
8
mature naive
8

Similar Publications

Fluorescent probes are widely used in cellular imaging and disease diagnosis. Acting as substitute carriers, fluorescent probes can also be used to help transport drugs within cells. In this study, commonly used fluorophores, TAMRA (5-carboxytetramethylrhodamine), PBA (1-pyrenebutyric acid), NBD (nitrobenzoxadiazole), OG (Oregon Green), and CF (5-carboxyfluorescein) were conjugated with the dipeptide β-Ala-Lys, the peptide moiety of the well-established peptide transporter substrate β-Ala-Lys(AMCA) (AMCA: 7-amino-4-methyl-coumarin-3-acetic acid) by modifying it with respect to side-chain length and functional end groups.

View Article and Find Full Text PDF

Background: RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type.

View Article and Find Full Text PDF

Endocrine therapy with CDK4/6 inhibitors is standard for estrogen receptor-positive, HER2-negative metastatic breast cancer (ER+/HER2- MBC), yet clinical resistance develops. Previously, we demonstrated that low doses of palbociclib activate autophagy, reversing initial G1 cell cycle arrest, while high concentrations induce off-target senescence. The autophagy inhibitor hydroxychloroquine (HCQ) induced on-target senescence at lower palbociclib doses.

View Article and Find Full Text PDF

AhASRK1, a peanut dual-specificity kinase that activates the Ca-ROS-MAPK signalling cascade to mediate programmed cell death induced by aluminium toxicity via ABA.

Plant Physiol Biochem

January 2025

Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China. Electronic address:

Aluminium (Al)-induced programmed cell death (PCD) is thought to be a main cause of Al phytotoxicity. However, the underlying mechanism by which Al induces PCD in plants is unclear. In this study, we characterized the function of AhASRK1 (Aluminum Sensitive Receptor-like protein Kinase1), an Al-induced LRR-type receptor-like kinase gene.

View Article and Find Full Text PDF

Integrative study of subcellular distribution, chemical forms, and physiological responses for understanding cadmium tolerance in two garden shrubs.

J Plant Physiol

January 2025

Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China. Electronic address:

Urban ornamental shrubs have significant potential for restoring cadmium (Cd)-contaminated soil. The Cd enrichment characteristics and tolerance mechanisms of Buxus sinica and Ligustrum × vicaryi were investigated through a simulated pot pollution experiment. Specifically, the Cd content and accumulation in different plant tissues, the subcellular distribution and chemical forms of Cd in the roots, and the effects of Cd on the ultrastructure of root cells under various Cd concentrations (0, 25, 50, 100, and 200 mg kg⁻) were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!