Objective: Recent studies have reported that skilled tennis players are likely to use proximal body information for anticipating the direction of their opponent's forehand shot. However, in these studies, the visual stimuli did not include visual information about the ball. Skilled players may have used proximal information owing to the lack of distal information. To address this issue, we developed a novel methodological approach using computer graphics (CG) images in which the entire body was presented by a combination of point-light display (i.e., poor graphical information, PLD) and polygons (i.e., rich graphical information). Using our novel methodological approach, we examined whether skilled tennis players use proximal body information when anticipating shot directions.
Methods And Results: Fifteen skilled tennis players and fifteen novice players tried to anticipate shot directions by observing four CG forehand strokes (ALPOL: all body parts were represented with polygon; RAPLD: racket and arm were represented with PLD; BOPLD: body parts without racket and arm were represented with PLD; and ALPLD: all body parts were represented with PLD). Our intention in creating CG models with such combinations (i.e., RAPLD and BOPLD) was that because of the richer graphical information provided by polygons compared to PLD, the participant's anticipatory judgment would be influenced more by body parts expressed with polygons. The results showed that for skilled players, anticipatory judgment was more accurate when they observed RAPLD than when they observed BOPLD and ALPLD. In contrast, for novice players, there were no differences in the accuracy of anticipatory judgments with the four CG models.
Conclusions: Only skilled players made more accurate anticipatory judgments when body regions were expressed with rich graphical information, and the racket and arm were expressed with poor graphical information. These suggest that skilled players used proximal information to effectively anticipate shot directions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5509252 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180985 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!