Protein complex detection in PPI networks plays an important role in analyzing biological processes. A new algorithm-DBGPWN-is proposed for predicting complexes in PPI networks. Firstly, a method based on gene ontology is used to measure semantic similarities between interacted proteins, and the similarity values are used as their weights. Then, a density-based graph partitioning algorithm is developed to find clusters in the weighted PPI networks, and the identified ones are considered to be dense and similar. Experimental results demonstrate that our approach achieves good performance as compared with such algorithms as MCL, CMC, MCODE, RNSC, CORE, ClusterOne and FGN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5507511PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180570PLOS

Publication Analysis

Top Keywords

ppi networks
16
weighted ppi
8
density-based approach
4
approach detecting
4
detecting complexes
4
complexes weighted
4
ppi
4
networks
4
networks semantic
4
semantic similarity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!