Target-site resistance to acetolactate synthase (ALS)-inhibiting herbicides in Amaranthus palmeri from Argentina.

Pest Manag Sci

Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina.

Published: December 2017

Background: Herbicide-resistant weeds are a serious problem worldwide. Recently, two populations of Amaranthus palmeri with suspected cross-resistance to acetolactate synthase (ALS)-inhibiting herbicides (R1 and R2) were found by farmers in two locations in Argentina (Vicuña Mackenna and Totoras, respectively). We conducted studies to confirm and elucidate the mechanism of resistance.

Results: We performed in vivo dose-response assays, and confirmed that both populations had strong resistance to chlorimuron-ethyl, diclosulam and imazethapyr when compared with a susceptible population (S). In vitro ALS activity inhibition tests only indicated considerable resistance to imazethapyr and chlorimuron-ethyl, indicating that other non-target mechanisms could be involved in diclosulam resistance. Subsequently, molecular analysis of als nucleotide sequences revealed three single base-pair mutations producing substitutions in amino acids previously associated with resistance to ALS inhibitors, A122, W574, and S653.

Conclusion: This is the first report of als resistance alleles in A. palmeri in Argentina. The data support the involvement of a target-site mechanism of resistance to ALS-inhibiting herbicides. © 2017 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.4662DOI Listing

Publication Analysis

Top Keywords

als-inhibiting herbicides
12
acetolactate synthase
8
synthase als-inhibiting
8
amaranthus palmeri
8
palmeri argentina
8
resistance
6
target-site resistance
4
resistance acetolactate
4
herbicides amaranthus
4
argentina background
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!