The olfactory evaluation function (e.g., odor intensity rating) of e-nose is always one of the most challenging issues in researches about odor pollution monitoring. But odor is normally produced by a set of stimuli, and odor interactions among constituents significantly influenced their mixture's odor intensity. This study investigated the odor interaction principle in odor mixtures of aldehydes and esters, respectively. Then, a modified vector model (MVM) was proposed and it successfully demonstrated the similarity of the odor interaction pattern among odorants of the same type. Based on the regular interaction pattern, unlike a determined empirical model only fit for a specific odor mixture in conventional approaches, the MVM distinctly simplified the odor intensity prediction of odor mixtures. Furthermore, the MVM also provided a way of directly converting constituents' chemical concentrations to their mixture's odor intensity. By combining the MVM with usual data-processing algorithm of e-nose, a new e-nose system was established for an odor intensity rating. Compared with instrumental analysis and human assessor, it exhibited accuracy well in both quantitative analysis (Pearson correlation coefficient was 0.999 for individual aldehydes ( = 12), 0.996 for their binary mixtures ( = 36) and 0.990 for their ternary mixtures ( = 60)) and odor intensity assessment (Pearson correlation coefficient was 0.980 for individual aldehydes ( = 15), 0.973 for their binary mixtures ( = 24), and 0.888 for their ternary mixtures ( = 25)). Thus, the observed regular interaction pattern is considered an important foundation for accelerating extensive application of olfactory evaluation in odor pollution monitoring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539596 | PMC |
http://dx.doi.org/10.3390/s17071624 | DOI Listing |
Microorganisms
January 2025
Life and Environmental Area, State University of Rio Grande do Sul, Encantado 95960-000, Brazil.
Wasted bread (WB) has been studied as an alternative ingredient for increasing the sustainable footprint in the beer production chain. There are gaps in the literature on the impact of WB on beer manufacturing. Thus, the objective was to evaluate the addition of WB as a replacement for wheat flakes in a craft beer.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi, China.
Manganese (Mn) is involved in plant metabolism as an enzyme cofactor. However, the role of Mn in the formation of volatile compounds in grapes has rarely been studied. To address this gap, this study explored the effect of foliar Mn application on the aroma traits of grapes and wine.
View Article and Find Full Text PDFFood Res Int
February 2025
Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China. Electronic address:
Aroma plays a crucial role in the quality of pure green tea beverage. However, there are limited methods to improve their aroma. In this study, green tea produced using shaking and piling process (SPGT) demonstrated a notable improvement in aromatic intensity, particularly in floral, fruity, and sweet notes.
View Article and Find Full Text PDFFood Res Int
February 2025
Shandong University of Science and Technology, Qingdao 266590, China. Electronic address:
The lack of sufficient flavour in perry represents a barrier to its further industrialization. This study aimed to investigate the effects of glutathione (GSH), β-glucosidase (Glu), and α-L-rhamnosidase (Rha) pretreatments, the fermentation temperature from 16 °C to 28 °C, and the aging time of 1, 2, and 3 years (PA1, PA2, and PA3) on the physicochemical properties, organic acids, and aroma profiles were investigated. The results demonstrated that the synergistic effect of Glu, Rha, and GSH was more effective than their individual or paired applications in enhancing the varietal aromas.
View Article and Find Full Text PDFFood Res Int
February 2025
State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, China; International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China. Electronic address:
Shaking and standing (SS) enhances the aroma intensity and quality of black tea (BT). However, its contribution to the taste remains unknown, and the interaction mechanism between the aroma and taste perception of black tea is also undisclosed. Here, the metabolomics and sensory evaluation-assisted flavor analysis were employed to investigate the changes in non-volatiles induced by SS, and the interaction mechanism between aroma and taste perception.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!