Previous studies have confirmed that spermatogenesis in homozygous Immp2l mutant male mice was normal at the age of 6 months, but was significantly abnormal at the age of 13 months. Meanwhile, oxidative stress is reported to be involved in spermatogenic impairment in old mutant mice. However, it is unclear whether antioxidant treatment is a suitable intervention for improving spermatogenesis in old mutant mice. This study sought to investigate the effect of mitochondria-targeted antioxidant SkQ1 on spermatogenesis in homozygous Immp2l mutant mice. Immp2l mutant mice were treated with the mitochondria-targeted antioxidant SkQ1 from the age of 6 weeks until 13 months. SkQ1 treatment significantly improved spermatogenesis in old Immp2 l mutant mice. Moreover, SkQ1 treatment improved the morphology of testicular seminiferous tubules, significantly reduced the apoptosis of germ cells and increased the level of GPX4 expression in old Immp2 l mutant mice. In conclusion, our data suggest that the mitochondria-targeted antioxidant SkQ1 is effective in improving spermatogenesis in Immp2 l mutant mice and might be used for the treatment of male infertility.

Download full-text PDF

Source
http://dx.doi.org/10.1111/and.12848DOI Listing

Publication Analysis

Top Keywords

mutant mice
32
mitochondria-targeted antioxidant
16
antioxidant skq1
16
immp2l mutant
16
immp2 l mutant
12
mutant
9
mice
9
spermatogenesis homozygous
8
homozygous immp2l
8
improving spermatogenesis
8

Similar Publications

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

The papillomavirus E2 protein regulates the transcription, replication, and segregation of viral episomes within the host cell. A multitude of post-translational modifications have been identified which control E2 functions. A highly conserved di-lysine motif within the transactivation domain (TAD) has been shown to regulate the normal functions of the E2 proteins of BPV-1, SfPV1, HPV-16, and HPV-31.

View Article and Find Full Text PDF

Decoding Codon Bias: The Role of tRNA Modifications in Tissue-Specific Translation.

Int J Mol Sci

January 2025

Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.

The tRNA epitranscriptome has been recognized as an important player in mRNA translation regulation. Our knowledge of the role of the tRNA epitranscriptome in fine-tuning translation via codon decoding at tissue or cell levels remains incomplete. We analyzed tRNA expression and modifications as well as codon optimality across seven mouse tissues.

View Article and Find Full Text PDF

Studying the Oncolytic Activity of Strains Against Hepatoma, Glioma, and Pancreatic Cancer and .

Microorganisms

January 2025

Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the Center for Personalized Medicine of Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, Acad. Pavlov Street, 12, 197022 Saint Petersburg, Russia.

Background: Cancer remains a leading cause of mortality globally. Conventional treatment modalities, including radiation and chemotherapy, often fall short of achieving complete remission, highlighting the critical need for novel therapeutic strategies. One promising approach involves the oncolytic potential of Group A (GAS) strains for tumor treatment.

View Article and Find Full Text PDF

Geniposidic 4-isoamyl ester (GENI) with anti-aging effects is a new iridoid glycoside derivative from Ellis found in our previous study. In this study, to indicate whether this compound has anti-Alzheimer's disease (AD) effect, the galactose-induced AD mice and naturally aging mice with AD were used to do drug efficacy evaluation. Furthermore, the Western blot, small interfering RNA (siRNA), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CESTA), liquid chromatography-tandem mass spectrometry (LC/MS-MS), adenosine 5'-monophosphate-activated protein kinase (AMPK) mutants and surface plasmon resonance (SPR) analysis were utilized to clarify the mechanism of action and identify target protein of this molecule.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!