Assessing the influence of media composition and ionic strength on drug release from commercial immediate-release and enteric-coated aspirin tablets.

J Pharm Pharmacol

Department of Pharmacy, Institute of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Greifswald, Germany.

Published: October 2017

Objectives: The objective of this test series was to elucidate the importance of selecting the right media composition for a biopredictive in-vitro dissolution screening of enteric-coated dosage forms.

Methods: Drug release from immediate-release (IR) and enteric-coated (EC) aspirin formulations was assessed in phosphate-based and bicarbonate-based media with different pH, electrolyte composition and ionic strength.

Key Findings: Drug release from aspirin IR tablets was unaffected by media composition. In contrast, drug release from EC aspirin formulations was affected by buffer species and ionic strength. In all media, drug release increased with increasing ionic strength, but in bicarbonate-based buffers was delayed when compared with that in phosphate-based buffers. Interestingly, the cation species in the dissolution medium had also a clear impact on drug release. Drug release profiles obtained in Blank CarbSIF, a new medium simulating pH and average ionic composition of small intestinal fluid, were different from those obtained in all other buffer compositions studied.

Conclusions: Results from this study in which the impact of various media parameters on drug release of EC aspirin formulations was systematically screened clearly show that when developing predictive dissolution tests, it is important to simulate the ionic composition of intraluminal fluids as closely as possible.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jphp.12777DOI Listing

Publication Analysis

Top Keywords

drug release
32
media composition
12
ionic strength
12
aspirin formulations
12
release aspirin
12
composition ionic
8
drug
8
release
8
immediate-release enteric-coated
8
enteric-coated aspirin
8

Similar Publications

Bariatric surgery is an effective treatment for type 2 Diabetes Mellitus (T2DM), yet the precise mechanisms underlying its effectiveness remain incompletely understood. While previous research has emphasized the role of rearrangement of the gastrointestinal anatomy, gaps persist regarding the specific impact on the gut microbiota and barriers within the biliopancreatic, alimentary, and common limbs. This study aimed to investigate the effects of duodenal-jejunal bypass (DJB) surgery on obese T2DM mice.

View Article and Find Full Text PDF

Design of pH-Responsive Nanomaterials Based on the Tumor Microenvironment.

Int J Nanomedicine

January 2025

Yantai Engineering Research Center for Digital Technology of Stomatology, Characteristic Laboratories of Colleges and Universities in Shandong Province for Digital Stomatology, Institute of Stomatology, Binzhou Medical University, Yantai, 264003, People's Republic of China.

The metabolic activity of tumor cells leads to the acidification of the surrounding microenvironment, which provides new strategies for the application of nanotechnology in cancer therapy. Researchers have developed various types of pH-responsive nanomaterials based on the tumor acidic microenvironment. This review provides an in-depth discussion on the design mechanisms, drug-loading strategies, and application pathways of tumor acidic microenvironment-responsive nanodrug delivery systems.

View Article and Find Full Text PDF

Renal dysfunction due to ischemia-reperfusion injury (IRI) is a common problem after kidney transplantation. In recent years, studies on animal models have shown that exosomes derived from mesenchymal stem cells (MSC-Exo) play an important role in treating acute kidney injury (AKI) and promoting tissue repair. The microneedle patch provides a noninvasive and targeted delivery system for exosomes.

View Article and Find Full Text PDF

Peritoneal chemotherapy delivery systems for ovarian cancer treatment: systematic review of animal models.

Front Oncol

January 2025

Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology (C2PO), Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (HCFMUSP), Sao Paulo, SP, Brazil.

Introduction: Intraperitoneal chemotherapy for ovarian cancer treatment has controversial benefits as most methodologies are associated with significant morbidity. We carried out a systematic review to compare tumor response, measured by tumor weight and volume, between intraperitoneal chemotherapy delivered via drug delivery systems (DDSs) and free intraperitoneal chemotherapy in animal models of ovarian cancer. The secondary aim was to assess the toxicity of DDS-delivered chemotherapy, based on changes in animal body weight.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is one of thes most prevalent malignant tumors worldwide. Current therapeutic strategies for CRC have limitations, while nanomaterials show significant potential for diagnosing and treating CRC. This study utilizes bibliometric analysis to evaluate the current status and trends in this field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!