Can photoacoustic imaging quantify surface-localized J-aggregating nanoparticles?

J Biomed Opt

University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, CanadabUniversity of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada.

Published: July 2017

We investigate the feasibility of photoacoustic (PA) imaging to quantify the concentration of surface-localized nanoparticles, using tissue-mimicking phantoms and imaging with a commercial PA instrument at 815 nm and a linear-array transducer at a center frequency of 40 MHz. The nanoparticles were J-aggregating porphysomes (JNP) comprising self-assembling, all-organic porphyrin-lipid micelles with a molar absorption coefficient of 8.7×108  cm−1 M−1 at this wavelength. The PA signal intensity versus JNP areal concentration followed a sigmoidal curve with a reproducible linear range of ∼17  fmol/mm2 to 11  pmol/mm2, i.e., ∼3 orders of magnitude with ±34% error. For physiologically-relevant conditions (i.e., optical scattering-dominated tissues: transport albedo >0.8) and JNP concentrations above ∼330  fmol/mm2, the PA signal depends only on the nanoparticle concentration. Otherwise, independent measurement of the optical absorption and scattering properties of the underlying tissue is required for accurate quantification. The implications for surface PA imaging, such as in the use of targeted nanoparticles applied topically to tissue as in endoscopic diagnosis, are considered.

Download full-text PDF

Source
http://dx.doi.org/10.1117/1.JBO.22.7.076008DOI Listing

Publication Analysis

Top Keywords

photoacoustic imaging
8
imaging quantify
8
quantify surface-localized
4
surface-localized j-aggregating
4
j-aggregating nanoparticles?
4
nanoparticles? investigate
4
investigate feasibility
4
feasibility photoacoustic
4
quantify concentration
4
concentration surface-localized
4

Similar Publications

Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).

View Article and Find Full Text PDF

Skin homeostasis is strongly dependent on its hydration levels, making skin water content measurement vital across various fields, including medicine, cosmetology, and sports science. Noninvasive diagnostic techniques are particularly relevant for clinical applications due to their minimal risk of side effects. A range of optical methods have been developed for this purpose, each with unique physical principles, advantages, and limitations.

View Article and Find Full Text PDF

Unrolled deep learning for breast cancer detection using limited-view photoacoustic tomography data.

Med Biol Eng Comput

January 2025

Department of Electrical and Communication Engineering, United Arab Emirates University, Asharej, Al Ain, 15551, Abu Dhabi, United Arab Emirates.

Photoacoustic tomography (PAT) has emerged as a promising imaging modality for breast cancer detection, offering unique advantages in visualizing tissue composition without ionizing radiation. However, limited-view scenarios in clinical settings present significant challenges for image reconstruction quality and computational efficiency. This paper introduces novel unrolled deep learning networks based on split Bregman total variation (SBTV) and relaxed basis pursuit alternating direction method of multipliers (rBP-ADMM) algorithms to address these challenges.

View Article and Find Full Text PDF

Coronary microvascular dysfunction (CMD) refers to clinical symptoms caused by structural and functional damage to coronary microcirculation. The timely and precise diagnosis of CMD-related myocardial ischemia is essential for improving patient prognosis. This study describes a method for the multimodal (fluorescence, ultrasonic, and photoacoustic) noninvasive imaging and treatment of CMD based on ischemic myocardium-targeting peptide (IMTP)-guided nanobubbles functionalized with indocyanine green (IMTP/ICG NBs) and characterizes their basic characteristics and in vitro imaging and targeting abilities.

View Article and Find Full Text PDF

Enhancing Photodynamic Therapy Efficacy via Photo-Triggered Calcium Overload and Oxygen Delivery in Tumor Hypoxia Management.

ACS Appl Mater Interfaces

January 2025

Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400010, China.

: Photodynamic therapy (PDT) has emerged as a promising treatment for cancer, primarily due to its ability to generate reactive oxygen species (ROS) that directly induce tumor cell death. However, the hypoxic microenvironment commonly found within tumors poses a significant challenge by inhibiting ROS production. This study aims to investigate the effect of improving tumor hypoxia on enhancing PDT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!