Quasiballistic quantum transport through Ge/Si core/shell nanowires.

Nanotechnology

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.

Published: September 2017

We study signatures of ballistic quantum transport of holes through Ge/Si core/shell nanowires at low temperatures. We observe Fabry-Pérot interference patterns as well as conductance plateaus at integer multiples of 2e /h at zero magnetic field. Magnetic field evolution of these plateaus reveals relatively large effective Landé g-factors. Ballistic effects are observed in nanowires with silicon shell thickness of 1-3 nm, but not in bare germanium wires. These findings inform the future development of spin and topological quantum devices which rely on ballistic sub-band-resolved transport.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aa7f82DOI Listing

Publication Analysis

Top Keywords

quantum transport
8
ge/si core/shell
8
core/shell nanowires
8
magnetic field
8
quasiballistic quantum
4
transport ge/si
4
nanowires study
4
study signatures
4
signatures ballistic
4
ballistic quantum
4

Similar Publications

Landau-Levich Scaling for Optimization of Quantum Dot Layer Morphology and Thickness in Quantum-Dot Light-Emitting Diodes.

ACS Nano

January 2025

Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton Street, Bethlehem, Pennsylvania 18015, United States.

Quantum dot (QD) light-emitting diodes (QLEDs) are promising candidates for next-generation displays because of their high efficiency, brightness, broad color gamut, and solution-processability. Large-scale solution-processing of electroluminescent QLEDs poses significant challenges, particularly concerning the precise control of the active layer's thickness and uniformity. These obstacles directly impact charge transport, leading to current leakage and reduced overall efficiency.

View Article and Find Full Text PDF

Cooling of Semiconductor Devices via Quantum Tunneling.

Phys Rev Lett

December 2024

Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, Massachusetts 02139, USA.

Classical transport of electrons and holes in nanoscale devices leads to heating that severely limits performance, reliability, and efficiency. In contrast, recent theory suggests that interband quantum tunneling and subsequent thermalization of carriers with the lattice results in local cooling of devices. However, internal cooling in nanoscale devices is largely unexplored.

View Article and Find Full Text PDF

Predicting Perovskite Photovoltaics Performance.

ACS Appl Mater Interfaces

January 2025

Department of Physics and Astronomy & Wright Center for Photovoltaic Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606, United States.

Wide band gap FACsPb(IBr) perovskite photovoltaic (PV) devices are measured by spectroscopic ellipsometry in the through-the-glass configuration and analyzed to determine the complex optical property spectra of the perovskite absorber as well as the structural properties of all constituent layers. This information is used to simulate external quantum efficiency (EQE) spectra, to calculate PV device performance parameters such as short circuit current density, open circuit voltage, fill factor, and power conversion efficiency, and to develop strategies for increasing the accuracy of predictions. Simulations and calculations tend to overestimate PV device performance parameters, undermining the accuracy and usefulness of those simulations.

View Article and Find Full Text PDF

A Molecular Perspective of Exciton Condensation from Particle-Hole Reduced Density Matrices.

J Phys Chem Lett

January 2025

Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.

Exciton condensation, the Bose-Einstein-like condensation of quasibosonic particle-hole pairs, has been the subject of much theoretical and experimental interest and holds promise for ultraenergy-efficient technologies. Recent advances in bilayer systems, such as transition metal dichalcogenide heterostructures, have brought us closer to the experimental realization of exciton condensation without the need for high magnetic fields. In this perspective, we explore progress toward understanding and realizing exciton condensation, with a particular focus on the characteristic theoretical signature of exciton condensation: an eigenvalue greater than one in the particle-hole reduced density matrix, which signifies off-diagonal long-range order.

View Article and Find Full Text PDF

This study explores the optoelectronic and photovoltaic potential of acceptor-π-donor (A-π-D) architectures utilizing CSi quantum dots (CSiQDs) through a combination of density functional theory (DFT) and time-dependent DFT (TDDFT). We examined two key structural configurations: C-C and Si-C conformers. In these systems, CSiQDs serve as the acceptor, CHSF as the π-bridge, and 3 × (CHO) as the donor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!