Low-toxicity metallosomes for biomedical applications by self-assembly of organometallic metallosurfactants and phospholipids.

Chem Commun (Camb)

Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona, Avda. de Can Domènech, 08193 Cerdanyola, Spain.

Published: July 2017

A new and convenient strategy for the preparation of metallosomes has been developed by mixing organometallic metallosurfactants and phospholipids. These aggregates show the characteristic properties of liposomes (stability upon dilution and low toxicity) and the toxicity is at least ten-fold lower than that of the metallosurfactant aggregates without phospholipids.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cc04945eDOI Listing

Publication Analysis

Top Keywords

organometallic metallosurfactants
8
metallosurfactants phospholipids
8
low-toxicity metallosomes
4
metallosomes biomedical
4
biomedical applications
4
applications self-assembly
4
self-assembly organometallic
4
phospholipids convenient
4
convenient strategy
4
strategy preparation
4

Similar Publications

Metallosurfactant aggregates: Structures, properties, and potentials for multifarious applications.

Adv Colloid Interface Sci

January 2024

Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India; Physics Department, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India. Electronic address:

Metallosurfactants offer important scientific and technological advances due to their novel interfacial properties. As a special class of structures formed by the integration of metal ions into amphiphilic surfactant molecules, these metal-based amphiphilic molecules possess both organometallic and surface chemistries. This review critically examines the structural transitions of metallosurfactants from micelle to vesicle upon metal coordination.

View Article and Find Full Text PDF

Metallosurfactants are emerging as a relatively new class of surfactants whose ligand moieties bind to various transition metals. Because transition metal centers are incorporated into the surfactant frameworks, they can form various self-assembled structures with metallic interfaces such as micelles, vesicles, and lyotropic liquid crystals. To reduce the lability of transition metal complexes under aqueous conditions, various amphiphilic ligands have been developed as surfactant frameworks.

View Article and Find Full Text PDF

Metallic amphiphiles are used as building blocks in the construction of nanoscale superstructures, where the hydrophobic effects induce the self-assembly of the nanoparticles of interest. However, the influence of synergizing multiple chemical interactions on an effective design of these structures mostly remains an open question. In this regard, supraamphiphilic systems based on flexible surfactant molecules and rigid macrocycles are being actively developed, but there are few works on the interaction between metallosurfactants and macrocycles.

View Article and Find Full Text PDF

Developments in the field of photodynamic therapy (PDT) are being made by investigating appropriate photosensitizers (PSs) and enhancing the penetration effect of light by developing new nano-carriers. So, to boost the PDT effect, in the present work, new metallocatanionic vesicles were fabricated by a convenient, efficient, green and inexpensive method to encapsulate PSs and evaluate their antimicrobial PDT against the drug-resistant bacterium Staphylococcus aureus. They were prepared from a combination of a double-chained copper-based cationic metallosurfactant (CuCPCII) and an anionic surfactant sodium bis(2-ethylhexyl)sulfosuccinate (Aerosol OT or AOT).

View Article and Find Full Text PDF

Metallosomes for biomedical applications by mixing molybdenum carbonyl metallosurfactants and phospholipids.

Dalton Trans

October 2018

Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona, Avda. de Can Domènech, 08193 Cerdanyola, Spain.

New supramolecular systems have been prepared by mixing molybdenum organometallic metallosurfactants M(CO)5L and M(CO)4L2 {L = Ph2P(CH2)6SO3Na} with the phospholipid phosphatidylcholine. The analysis of the resulting supramolecular structures using dynamic light scattering and cryo-transmission electron microscopy has shown the formation of different aggregates depending on the metallosurfactant/phospholipid ratio, as well as a significantly different behaviour between the two studied metallosurfactants. Mixed vesicles, with properties very similar to liposomes, can be obtained with both compounds, and are called metallosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!