Nanoparticle delivery of curcumin induces cellular hypoxia and ROS-mediated apoptosis via modulation of Bcl-2/Bax in human neuroblastoma.

Nanoscale

Materials Science and Engineering, Advanced Materials Processing Center, University of Central Florida, Orlando, FL 32816, USA and Nanoscience Technology Center, University of Central Florida, Orlando, FL 32826, USA and College of Medicine, University of Central Florida, Orlando, FL 32816, USA.

Published: July 2017

In this study, several formulations of nanoceria and dextran-nanoceria with curcumin, each demonstrated to have anti-cancer properties, were synthesized and applied as treatment for human childhood neuroblastoma. The anti-cancer activities of these formulations were explored in neuroblastoma models of both MYCN-amplified and non-amplified cell lines. Ceria nanoparticles, coated with dextran and loaded with curcumin, were found to induce substantial cell death in neuroblastoma cells (up to a 2-fold and a 1.6-fold decrease in cell viability for MYCN-upregulated and normal expressing cell lines, respectively; *p < 0.05) while producing no or only minor toxicity in healthy cells (no toxicity at 100 μM; **p < 0.01). This formulation evokes prolonged oxidative stress, stabilizing HIF-1α, and inducing caspase-dependent apoptosis (up to a 2.4-fold increase over control; *p < 0.05). Overall, nano-therapeutic treatments showed a more pronounced effect in MYCN-amplified cells, which are traditionally more resistant to drug therapies. These results represent a very promising alternative to small molecule drug therapies for robust cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7nr02770bDOI Listing

Publication Analysis

Top Keywords

cell lines
8
drug therapies
8
nanoparticle delivery
4
delivery curcumin
4
curcumin induces
4
induces cellular
4
cellular hypoxia
4
hypoxia ros-mediated
4
ros-mediated apoptosis
4
apoptosis modulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!