Asymmetric synthesis of new γ-butenolides via organocatalyzed epoxidation of chalcones.

Org Biomol Chem

Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.

Published: July 2017

γ-Butenolides have been recognized as an important structural framework in a number of natural products and medicinally important agents. In this work we describe a new metal-free sequential strategy for the asymmetric synthesis of substituted γ-butenolides having epoxychalcones as the advanced intermediate. Using the optimized reaction conditions, we were able to carry out the three-step sequence, epoxidation, olefination and hydrolysis, with only one single chromatographic purification of the final product, furnishing new enantiomerically enriched γ-butenolides in moderate overall yield and good enantiomeric excess.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7ob00165gDOI Listing

Publication Analysis

Top Keywords

asymmetric synthesis
8
γ-butenolides
4
synthesis γ-butenolides
4
γ-butenolides organocatalyzed
4
organocatalyzed epoxidation
4
epoxidation chalcones
4
chalcones γ-butenolides
4
γ-butenolides recognized
4
recognized structural
4
structural framework
4

Similar Publications

The glycoprotein hormones of humans, produced in the pituitary and acting through receptors in the gonads to support reproduction and in the thyroid gland for metabolism, have co-evolved from invertebrate counterparts . These hormones are heterodimeric cystine-knot proteins; and their receptors bind the cognate hormone at an extracellular domain and transmit the signal of this binding through a transmembrane domain that interacts with a heterotrimeric G protein. Structures determined for the human receptors as isolated for cryogenic electron microscopy (cryo-EM) are all monomeric despite compelling evidence for their functioning as dimers .

View Article and Find Full Text PDF

Temperature-Directed Morphology Transformation Method for Precision-Engineered Polymer Nanostructures.

ACS Nano

January 2025

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.

With polymer nanoparticles now playing an influential role in biological applications, the synthesis of nanoparticles with precise control over size, shape, and chemical functionality, along with a responsive ability to environmental changes, remains a significant challenge. To address this challenge, innovative polymerization methods must be developed that can incorporate diverse functional groups and stimuli-responsive moieties into polymer nanostructures, which can then be tailored for specific biological applications. By combining the advantages of emulsion polymerization in an environmentally friendly reaction medium, high polymerization rates due to the compartmentalization effect, chemical functionality, and scalability, with the precise control over polymer chain growth achieved through reversible-deactivation radical polymerization, our group developed the temperature-directed morphology transformation (TDMT) method to produce polymer nanoparticles.

View Article and Find Full Text PDF

Electrically conductive coordination polymers (ECCPs), particularly those incorporating benzenehexathiol (BHT) ligands, are emerging as a distinctive class of electronic materials with tunable semiconducting and metallic properties. However, the exploration of novel ECCPs with low-symmetry structures and electrical anisotropy remains under development. Here, we report the on-water surface synthesis of a novel ECCP, namely Cu5BHT, which exhibits a low-symmetry structure and unique in-plane electrical anisotropy that differs from the well-known Cu3BHT phase.

View Article and Find Full Text PDF

Digital recombinase polymerase amplification chip based on asymmetric contact angle composite interface.

Anal Chim Acta

February 2025

Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China. Electronic address:

Background: Digital recombinase polymerase amplification (dRPA) is an effective tool for the absolute quantification of nucleic acids and the detection of rare mutations. Due to the high viscosity or other physical properties of the reagent, this can compromise the accuracy and reproducibility of detection results, which limits the broader adoption and practical application of this technology. In this study, we developed an asymmetric contact angle digital isothermal detection (ACA-DID) chip and optimized the ACA-DID chip structure to achieve rapid digital recombinase polymerase amplification.

View Article and Find Full Text PDF

CFH-synthon enables asymmetric radical difluoroalkylation for synthesis of chiral difluoromethylated amines.

Nat Commun

January 2025

Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

The difluoromethyl group is a crucial fluorinated moiety with distinctive biological properties, and the synthesis of chiral CF₂H-containing analogs has been recognized as a powerful strategy in drug design. To date, the most established method for accessing enantioenriched difluoromethyl compounds involves the enantioselective functionalization of nucleophilic and electrophilic CF₂H synthons. However, this approach is limited by lower reactivity and reduced enantioselectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!