We utilized a rigid ligand platform PyCp (PyCp = [2,6-(CHCH)CHN]) to isolate dinuclear Dy complexes [(PyCp)Dy-(μ-OSOCF)] (1) and [(PyCp)Dy-(μ-Cl)] (3) as well as the mononuclear complex (PyCp)Dy(OSOCF)(thf) (2). Compounds 1 and 2 are the first examples of organometallic Dy complexes featuring triflate binding. The isolation of compounds 1 and 3 allows us to comparatively evaluate the effects of the bridging anions on the magnetization dynamics of the dinuclear systems. Our investigations show that although the exchange coupling interactions differ for 1 and 3, the dynamic magnetic properties are dominated by relaxation via the first excited state Kramers doublet of the individual Dy sites. Compounds 1 and 3 exhibit barriers to magnetization reversal (U = 49 cm) that can be favorably compared to those of the previously reported examples of [CpDy(μ-Cl)] (U = 26 cm) and [CpDy(thf)(μ-Cl)] (U = 34 cm).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cc02457f | DOI Listing |
Anal Chem
January 2025
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
The detection of disease-related protein biomarkers plays a crucial role in the early diagnosis, treatment, and monitoring of diseases. The concentrations of protein biomarkers can vary significantly in different diseases or stages of the same disease. However, most of the existing analytical methods cannot simultaneously meet the requirements of high sensitivity and a wide dynamic range.
View Article and Find Full Text PDFJACC Heart Fail
January 2025
King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, London, United Kingdom; King's College Hospital NHS Foundation Trust, London, United Kingdom. Electronic address:
Background: Neutrophil-to-lymphocyte ratio (NLR) is an easy-to-use inflammatory biomarker. Baseline NLR is independently associated with incident cardiovascular events and all-cause mortality. However, whether this applies to acute myocarditis (AM) has not been evaluated.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
Irregular and unpredictable fetal movement is the most common cause of artifacts in in utero functional magnetic resonance imaging (fMRI), affecting analysis and limiting our understanding of early functional brain development. The accurate detection of corrupted functional connectivity (FC) resulting from motion artifacts or preprocessing, instead of neural activity, is a prerequisite for reliable and valid analysis of FC and early brain development. Approaches to address this problem in adult data are of limited utility in fetal fMRI.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
Zero echo time (zero-TE) pulse sequences provide a quiet and artifact-free alternative to conventional functional magnetic resonance imaging (fMRI) pulse sequences. The fast readouts (<1 ms) utilized in zero-TE fMRI produce an image contrast with negligible contributions from blood oxygenation level-dependent (BOLD) mechanisms, yet the zero-TE contrast is highly sensitive to brain function. However, the precise relationship between the zero-TE contrast and neuronal activity has not been determined.
View Article and Find Full Text PDFFront Mol Biosci
January 2025
Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States.
This study investigates the dynamics of oleate hydratase (OhyA), a bacterial flavoenzyme from , and its interactions with lipid membranes, focusing on the factors influencing membrane binding and oligomerization. OhyA catalyzes the hydration of unsaturated fatty acids, playing a key role in bacterial pathogenesis by neutralizing host antimicrobial fatty acids. OhyA binds the membrane bilayer to access membrane-embedded substrates for catalysis, and structural studies have revealed that OhyA forms oligomers on membrane surfaces, stabilized by both protein-protein and protein-lipid interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!