Background: (PG) has a long history of use in Asian medicine because of its multiple pharmacological activities. It has been considered that PG in a type of white ginseng may induce undesirable thermogenic effects, but not in a type of red ginseng. However, there is a lack of evidence about the correlation between ginsenoside and thermogenesis.
Methods: We investigated the effects of PG with different ginsenoside compositions on body temperature, blood pressure, and thermogenesis-related factors in rats.
Results: With increasing steaming time (0 h, 3 h, 6 h, and 9 h), the production of protopanaxadiol ginsenosides increased, whereas protopanaxatriol ginsenosides decreased in white ginseng. In both short- and long-term studies, administration of four ginseng extracts prepared at different steaming times did not induce significant changes in body temperature (skin, tail, and rectum) and blood pressure of rats compared to saline control. In addition, there were no significant differences in the molecular markers related to thermogenesis ( > 0.05), mRNA expressions of peroxisome proliferator-activated receptor-gamma coactivator-1α and uncoupling protein 1 in brown adipose tissue, as well as the serum levels of interleukin-6, inducible nitric oxide synthase, and nitrite among the treatment groups.
Conclusion: These observations indicate that the potential undesirable effects of PG on body temperature could not be explained by the difference in ginsenoside composition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489762 | PMC |
http://dx.doi.org/10.1016/j.jgr.2016.07.001 | DOI Listing |
J Exp Biol
January 2025
Ornis italica, Rome, Italy.
Rapid reduction of body size in populations responding to global warming suggests the involvement of temperature-dependent physiological adjustments during growth, such as mitochondrial alterations, in the efficiency of producing metabolic energy, a process that is poorly explored, especially in endotherms. Here, we examined the mitochondrial metabolism and proteomic profile of red blood cells in relation to body size and cellular energetics in nestling shearwaters (Calonectris diomedea) developing at different natural temperatures. We found that nestlings of warmer nests had lighter bodies and smaller beaks at fledging.
View Article and Find Full Text PDFPLoS Biol
January 2025
Department of Biology, University of Washington, Seattle, Washington, United States of America.
Body size declines are a common response to warming via both plasticity and evolution, but variable size responses have been observed for terrestrial ectotherms. We investigate how temperature-dependent development and growth rates in ectothermic organisms induce variation in size responses. Leveraging long-term data for six montane grasshopper species spanning 1,768-3 901 m, we detect size shifts since ~1960 that depend on elevation and species' seasonal timing.
View Article and Find Full Text PDFInnovation (Camb)
September 2024
Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, China.
The human skin maintains a comfortable and healthy somatosensory state by sensing different aspects of the thermal environment, including temperature value, heat source, energy level, and duration. However, state-of-the-art thermosensors only measure basic temperature values, not the full range of the thermosensation function of human skin. Here, we propose a heat source recognition () sensor of poly(butyl acrylate)-lithium bis(n-fluoroalkylsulfonyl)imide (PBA-Li:FSI; = 1, 3, 5), which enables response to temperature, pressure, and proximity stimulus signals based on the relaxation behavior of the ionic gel and distinguished between different types of heat sources (i.
View Article and Find Full Text PDFHeatstroke is caused by a loss of control over body temperature. There is a high risk of death if it is not treated quickly and properly. In this article, we report a clinical case of a 21-year-old male patient treated for heatstroke with extravascular temperature control.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Otolaryngology, Affiliated Hospital of Hebei University, 212th Yuhua Road, Baoding, Hebei, China.
The patient's body temperature significantly fluctuates, affected by factors, including anesthesia. The ideal temperature monitoring method that is suitable for perioperative application is of great significance for identifying hypothermia and malignant hyperthermia early, as well as for guiding intraoperative temperature protection. This study aims to compare the cutaneous zero-heat-flux (ZHF) thermometer application in general anesthesia using the infrared tympanic measurement as a reference.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!