A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A systematic comparison of clinically viable nanomedicines targeting HMG-CoA reductase in inflammatory atherosclerosis. | LitMetric

A systematic comparison of clinically viable nanomedicines targeting HMG-CoA reductase in inflammatory atherosclerosis.

J Control Release

Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands; Imaging Division, University Medical Centre Utrecht, Utrecht 3584 CX, The Netherlands. Electronic address:

Published: September 2017

AI Article Synopsis

  • Atherosclerosis is a major global health issue, and new targeted therapies using nanoparticles could enhance treatment options for this condition.
  • Three types of nanomedicines—high-density lipoprotein (HDL), polymeric micelles (PM), and liposomes (LIP)—loaded with the cholesterol-lowering drug simvastatin were tested in a mouse model of atherosclerosis to assess their effectiveness in reducing inflammation in plaques.
  • The study found that while all three formulations were effective at targeting plaques, polymeric micelles were the most efficient at reducing macrophage levels in advanced plaques, highlighting the need for deeper understanding of how nanomedicines behave in the body for better clinical applications.

Article Abstract

Atherosclerosis is a leading cause of worldwide morbidity and mortality whose management could benefit from novel targeted therapeutics. Nanoparticles are emerging as targeted drug delivery systems in chronic inflammatory disorders. To optimally exploit nanomedicines, understanding their biological behavior is crucial for further development of clinically relevant and efficacious nanotherapeutics intended to reduce plaque inflammation. Here, three clinically relevant nanomedicines, i.e., high-density lipoprotein ([S]-HDL), polymeric micelles ([S]-PM), and liposomes ([S]-LIP), that are loaded with the HMG-CoA reductase inhibitor simvastatin [S], were evaluated in the apolipoprotein E-deficient (Apoe) mouse model of atherosclerosis. We systematically employed quantitative techniques, including in vivo positron emission tomography imaging, gamma counting, and flow cytometry to evaluate the biodistribution, nanomedicines' uptake by plaque-associated macrophages/monocytes, and their efficacy to reduce macrophage burden in atherosclerotic plaques. The three formulations demonstrated distinct biological behavior in Apoe mice. While [S]-PM and [S]-LIP possessed longer circulation half-lives, the three platforms accumulated to similar levels in atherosclerotic plaques. Moreover, [S]-HDL and [S]-PM showed higher uptake by plaque macrophages in comparison to [S]-LIP, while [S]-PM demonstrated the highest uptake by Ly6C monocytes. Among the three formulations, [S]-PM displayed the highest efficacy in reducing macrophage burden in advanced atherosclerotic plaques. In conclusion, our data demonstrate that [S]-PM is a promising targeted drug delivery system, which can be advanced for the treatment of atherosclerosis and other inflammatory disorders in the clinical settings. Our results also emphasize the importance of a thorough understanding of nanomedicines' biological performance, ranging from the whole body to the target cells, as well drug retention in the nanoparticles. Such systematic investigations would allow rational applications of nanomaterials', beyond cancer, facilitating the expansion of the nanomedicine horizon.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2017.07.013DOI Listing

Publication Analysis

Top Keywords

atherosclerotic plaques
12
hmg-coa reductase
8
targeted drug
8
drug delivery
8
inflammatory disorders
8
biological behavior
8
clinically relevant
8
macrophage burden
8
three formulations
8
[s]-pm
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!