Reported herein is an efficient copper(I)-catalytic system for the diastereo- and enantioselective 1,2-addition of 1,1-bis[(pinacolato)boryl]alkanes to protected imines to afford synthetically valuable enantioenriched β-aminoboron compounds bearing contiguous stereogenic centers. The reaction exhibits a broad scope with respect to protected imines and 1,1-bis[(pinacolato)boryl]alkanes, thus providing β-aminoboronate esters with excellent diastereo- and enantioselectivity. The synthetic utility of the obtained β-aminoboronate ester was also demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201705829DOI Listing

Publication Analysis

Top Keywords

diastereo- enantioselective
8
β-aminoboronate esters
8
12-addition 11-bis[pinacolatoboryl]alkanes
8
protected imines
8
enantioselective synthesis
4
synthesis β-aminoboronate
4
esters copperi-catalyzed
4
copperi-catalyzed 12-addition
4
11-bis[pinacolatoboryl]alkanes imines
4
imines reported
4

Similar Publications

The absolute and relative configurations of bioactive chiral molecules are typically relevant to their biological properties. It is thus highly important and desirable to construct all possible stereoisomers of a lead candidate or a given bioactive natural compound. Synergistic dual catalysis has been recognized as a reliable synthetic strategy for a variety of predictable stereodivergent transformations.

View Article and Find Full Text PDF

The catalytic asymmetric multicomponent acylation/rearrangement/cyclization of alkenylfurans with acyl oxime esters/arylamines or acyl oxime esters/arylamines/hydroxylamine has been developed. This method employs synergistic photoredox/Brønsted acid catalysis, enabling the efficient and versatile synthesis of multifunctionalized [3.2.

View Article and Find Full Text PDF

Cu-Catalyzed Diastereo- and Enantioselective Synthesis of Borylated Cyclopropanes with Three Contiguous Stereocenters.

J Am Chem Soc

January 2025

Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Direct synthesis of enantioenriched scaffolds with multiple adjacent stereocenters remains an important yet challenging task. Herein, we describe a highly diastereo- and enantioselective Cu-catalyzed alkylboration of cyclopropenes, with less reactive alkyl iodides as electrophiles, for the efficient synthesis of -substituted borylated cyclopropanes bearing three consecutive stereocenters. This protocol features mild conditions, a broad substrate scope, and good functional group tolerance, affording an array of chiral borylated cyclopropanes in good to high yields with excellent diastereo- and enantioselectivities.

View Article and Find Full Text PDF

Amide-Directed Highly Enantioselective Hydrogenation of Diverse Acyclic Multisubstituted Alkenes Under Mild Conditions.

Angew Chem Int Ed Engl

January 2025

Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China.

Enantioselective hydrogenation of tetrasubstituted alkenes to form 1,2-contiguous stereocenters is a particularly appealing but highly challenging transformation in asymmetric catalysis. Despite the notable progress achieved in enantioselective hydrogenation over the past decades, enantioselective hydrogenation of all-carbon tetrasubstituted alkenes containing multiple alkyl groups remains an unsolved challenge. Here, we report a rhodium-catalyzed highly diastereo- and enantioselective hydrogenation of diverse acyclic multisubstituted alkenes under mild conditions.

View Article and Find Full Text PDF

Nozaki-Hiyama-Kishi (NHK) reactions offer a mild approach for the formation of alcohol motifs through radical-polar crossover-based pathways from various radical precursors. However, the application of multicomponent NHK-type reactions, which allow the formation of multiple bonds in a single step, has been largely restricted to bulky alkyl radical precursors, thus limiting their expanded utilization. Herein, we disclose a general three-component NHK-type reaction enabled by delayed radical-polar crossover, which efficiently tolerates a plethora of radical precursors that were previously unavailable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!