Non-typeable Haemophilus influenzae (NTHi) is an opportunistic pathogen that plays a major role in a number of respiratory tract infections, including otitis media, cystic fibrosis and chronic obstructive pulmonary disease. Biofilm formation has been implicated in both NTHi colonization and disease, and is responsible for the increased tolerance of this pathogen towards antibiotic treatment. Targeting metabolic pathways that are important in NTHi biofilm formation represents a potential strategy to combat this antibiotic recalcitrance. A previous investigation demonstrated increased expression of a putative d-methionine uptake protein following exposure of NTHi biofilms to the ubiquitous signalling molecule, nitric oxide. We therefore hypothesized that treatment with exogenous d-methionine would impact on NTHi biofilm formation and increase antibiotic sensitivity. Treatment of NTHi during the process of biofilm formation resulted in a reduction in biofilm viability, increased biomass, changes in the overall biofilm architecture and the adoption of an amorphous cellular morphology. Quantitative proteomic analyses identified 124 proteins that were differentially expressed following d-methionine treatment, of which 51 (41 %) were involved in metabolic and transport processes. Nine proteins involved in peptidoglycan synthesis and cell division showed significantly increased expression. Furthermore, d-methionine treatment augmented the efficacy of azithromycin treatment and highlighted the potential of d-methionine as an adjunctive therapeutic approach for NTHi biofilm-associated infections.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.000491DOI Listing

Publication Analysis

Top Keywords

biofilm formation
20
non-typeable haemophilus
8
haemophilus influenzae
8
peptidoglycan synthesis
8
nthi biofilm
8
increased expression
8
d-methionine treatment
8
biofilm
7
nthi
7
d-methionine
6

Similar Publications

Microorganisms tend to accumulate on surfaces, forming aggregates such as biofilms, which grant them resistance to various environmental stressors and antimicrobial agents. This ability has hindered the effective treatment of diseases caused by pathogenic microorganisms, including Salmonella, which is responsible for a significant number of deaths worldwide. This study aimed to compare the metabolic profiles of planktonic and sessile cells of Salmonella Enteritidis using a metabolomics approach.

View Article and Find Full Text PDF

Bacterial plant diseases, worsened by biofilm-mediated resistance, are increasingly threatening global food security. Numerous attempts have been made to develop agrochemicals that inhibit biofilms, however, their ineffective foliar deposition and difficulty in removing mature biofilms remain major challenges. Herein, multifunctional three-component supramolecular nano-biscuits (NI6R@CB[7]@β-CD) are successfully engineered via ordered self-assembly between two macrocycles [cucurbit[7]uril (CB[7]), β-cyclodextrin (β-CD)] and (R)-2-naphthol-based bis-imidazolium bromide salt (NI6R).

View Article and Find Full Text PDF

Turning Waste into Treasure: Functionalized Biomass-Derived Carbon Dots for Superselective Visualization and Eradication of Gram-Positive Bacteria.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China.

Gram-positive bacteria pose significant threats to human health, necessitating the development of targeted bacterial detection and eradication strategies. Nevertheless, current approaches often suffer from poor targeting specificity. Herein, the study utilizes purple rice lixivium to synthesize biomass carbon dots (termed BCDs) with wheat germ agglutinin-like residues for precisely targeting Gram-positive bacteria.

View Article and Find Full Text PDF

Development of Synthetic Antimicrobial Peptides Based on Genomic Analysis of Streptococcus salivarius.

J Clin Lab Anal

January 2025

Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

Background: In the oral environment, the production of bacteriocins or antimicrobial peptides (AMPs) plays a crucial role in maintaining ecological balance by impeding the proliferation of closely related microorganisms. This study aims to conduct in silico genome screening of Streptococcus salivarius to identify potential antimicrobial compounds existing as hypothetical peptides, with the goal of developing novel synthetic antimicrobial peptides.

Methods: Draft genomes of various oral Streptococcus salivarius strains were obtained from the NCBI database and subjected to analysis using bioinformatic tools, viz.

View Article and Find Full Text PDF

Synthesis, Structural Analysis, and Antibacterial Properties of a Novel β-Aminoenone.

Chem Biodivers

January 2025

Universidad Nacional de Tucuman Facultad de Bioquimica Quimica y Farmacia, Chemistry, Av. Kirchner 1900, 4000, San Miguel de Tucumán, ARGENTINA.

(Z)-3-butylamino-4,4,4-trifluoro-1-(2-hydroxyphenyl)but-2-en-1-one (1), a new β-aminoenone, has been investigated in terms of its intra- and intermolecular interactions. Vibrational, electronic and NMR spectroscopies were used for the characterization, while X-ray diffraction methods afforded the determination of the crystal structure. The compound is arranged in the crystal lattice as centre-symmetric H-bonded dimeric aggregates (C2/c monoclinic space group).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!