Opioid analgesics are the standards of care for the treatment of moderate to severe nociceptive pain, particularly in the setting of cancer and surgery. Their analgesic properties mainly emanate from stimulation of the μ receptors, which are encoded by the OPRM1 gene. Hepatic metabolism represents the major route of elimination, which, for some opioids, namely codeine and tramadol, is necessary for their bioactivation into more potent analgesics. The highly polymorphic nature of the genes coding for phase I and phase II enzymes (pharmacokinetics genes) that are involved in the metabolism and bioactivation of opioids suggests a potential interindividual variation in their disposition and, most likely, response. In fact, such an association has been substantiated in several pharmacokinetic studies described in this review, in which drug exposure and/or metabolism differed significantly based on the presence of polymorphisms in these pharmacokinetics genes. Furthermore, in some studies, the observed variability in drug exposure translated into differences in the incidence of opioid-related adverse effects, particularly nausea, vomiting, constipation, and respiratory depression. Although the influence of polymorphisms in pharmacokinetics genes, as well as pharmacodynamics genes (OPRM1 and COMT) on response to opioids has been a subject of intense research, the results have been somehow conflicting, with some evidence insinuating for a potential role for OPRM1. The Clinical Pharmacogenetics Implementation Consortium guidelines provide CYP2D6-guided therapeutic recommendations to individualize treatment with tramadol and codeine. However, implementation guidelines for other opioids, which are more commonly used in real-world settings for pain management, are currently lacking. Hence, further studies are warranted to bridge this gap in our knowledge base and ultimately ascertain the role of pharmacogenetic markers as predictors of response to opioid analgesics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/phar.1986DOI Listing

Publication Analysis

Top Keywords

pharmacokinetics genes
12
pain management
8
opioid analgesics
8
drug exposure
8
polymorphisms pharmacokinetics
8
genes
5
review opioid
4
opioid pharmacogenetics
4
pharmacogenetics considerations
4
considerations pain
4

Similar Publications

Background: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder affecting multiple organ systems, with a prevalence of 1:6,760-1:13,520 live births in Germany. On the molecular level, TSC is caused by heterozygous loss-of-function variants in either of the genes TSC1 or TSC2, encoding the Tuberin-Hamartin complex, which acts as a critical upstream suppressor of the mammalian target of rapamycin (mTOR), a key signaling pathway controlling cellular growth and metabolism. Despite the therapeutic success of mTOR inhibition in treating TSC-associated manifestations, studies with mTOR inhibitors in children with TSC above two years of age have failed to demonstrate beneficial effects on disease-related neuropsychological deficits.

View Article and Find Full Text PDF

Differential detoxification enzyme profiles in C-corn strain and R-rice strain of Spodoptera frugiperda by comparative genomic analysis: insights into host adaptation.

BMC Genomics

January 2025

Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, China.

Background: The fall armyworm (FAW) Spodoptera frugiperda, a highly invasive, polyphagous pest, poses a global agricultural threat. It has two strains, the C-corn and R-rice strains, each with distinct host preferences. This study compares detoxification enzyme gene families across these strains and related Spodoptera species to explore their adaptation to diverse host plant metabolites.

View Article and Find Full Text PDF

Gene expression biomarkers have the potential to identify genotoxic and non-genotoxic carcinogens, providing opportunities for integrated testing and reducing animal use. In August 2022, an International Workshops on Genotoxicity Testing (IWGT) workshop was held to critically review current methods to identify genotoxicants using transcriptomic profiling. Here, we summarize the findings of the workgroup on the state of the science regarding the use of transcriptomic biomarkers to identify genotoxic chemicals in vitro and in vivo.

View Article and Find Full Text PDF

The impact of , , and polymorphisms on tacrolimus dose-adjusted concentration and clinical outcomes in adult allogeneic hematopoietic stem cell transplantation.

Xenobiotica

January 2025

Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.

1. Polymorphisms in genes related to drug-metabolizing genes may affect tacrolimus exposure. This study aimed to assess the influence of , , and polymorphisms on tacrolimus pharmacokinetics and outcomes in allogeneic hematopoietic stem cell transplantation (HSCT).

View Article and Find Full Text PDF

The therapeutic role of naringenin nanoparticles on hepatocellular carcinoma.

BMC Pharmacol Toxicol

January 2025

Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.

Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!