In 2012, cases of lethal pneumonia among Chinese miners prompted the isolation of a rat-borne henipavirus (HNV), Mòjiāng virus (MojV). Although MojV is genetically related to highly pathogenic bat-borne henipaviruses, the absence of a conserved ephrin receptor-binding motif in the MojV attachment glycoprotein (MojV-G) indicates a differing host-cell recognition mechanism. Here we find that MojV-G displays a six-bladed β-propeller fold bearing limited similarity to known paramyxoviral attachment glycoproteins, in particular at host receptor-binding surfaces. We confirm the inability of MojV-G to interact with known paramyxoviral receptors in vitro, indicating an independence from well-characterized ephrinB2/B3, sialic acid and CD150-mediated entry pathways. Furthermore, we find that MojV-G is antigenically distinct, indicating that MojV would less likely be detected in existing large-scale serological screening studies focused on well-established HNVs. Altogether, these data indicate a unique host-cell entry pathway for this emerging and potentially pathogenic HNV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5510225PMC
http://dx.doi.org/10.1038/ncomms16060DOI Listing

Publication Analysis

Top Keywords

mòjiāng virus
8
attachment glycoprotein
8
host-cell entry
8
entry pathway
8
find mojv-g
8
idiosyncratic mòjiāng
4
virus attachment
4
glycoprotein directs
4
directs host-cell
4
pathway distinct
4

Similar Publications

IL-17 as a putative hallmark of intense arthralgia and age-related serum immune mediator networks during acute chikungunya fever.

Inflamm Res

January 2025

Laboratório de Virologia Básica E Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, MG, Brazil.

Introduction: The present study aimed at evaluating the systemic profile and network connectivity of immune mediators during acute chikungunya fever (CHIKF) according to days of symptoms onset and ageing.

Methods: A total of 161 volunteers (76 CHIKF patients and 85 non-infected healthy controls) were enrolled.

Results And Discussion: Data demonstrated that a massive and polyfunctional storm of serum immune mediators was observed in CHIKF.

View Article and Find Full Text PDF

Introduction: We sought to explore the variability of antibody responses to multiple vaccines during early life in individual children, assess the trajectory of each child longitudinally, determine the associations of demographic variables and antibiotic exposures with vaccine-induced immunity, and link vaccine responsiveness to infection proneness.

Methods: In 357 prospectively-recruited children, age six through 36 months, antibody levels to 13 routine vaccine antigens were measured in sera at multiple time points and normalized to their respective protective thresholds to categorize children into four groups: very low, low, normal, and high vaccine responder. Demographic variables and frequency of antibiotic exposure data were collected.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.

View Article and Find Full Text PDF

Novel archaeal ribosome dimerization factor facilitating unique 30S-30S dimerization.

Nucleic Acids Res

January 2025

Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.

Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress.

View Article and Find Full Text PDF

Synthetic rational design of live-attenuated Zika viruses based on a computational model.

Nucleic Acids Res

January 2025

SynVaccine Ltd, Ramat Hachayal, 3 Golda Meir Street, Science Park, Nes Ziona 7403648, Israel.

Many viruses of the Flaviviridae family, including the Zika virus (ZIKV), are human pathogens of significant public health concerns. Despite extensive research, there are currently no approved vaccines available for ZIKV and specifically no live-attenuated Zika vaccine. In this current study, we suggest a novel computational algorithm for generating live-attenuated vaccines via the introduction of silent mutation into regions that undergo selection for strong or weak local RNA folding or into regions that exhibit medium levels of sequence conservation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!