A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detecting clinically relevant new information in clinical notes across specialties and settings. | LitMetric

Background: Automated methods for identifying clinically relevant new versus redundant information in electronic health record (EHR) clinical notes is useful for clinicians and researchers involved in patient care and clinical research, respectively. We evaluated methods to automatically identify clinically relevant new information in clinical notes, and compared the quantity of redundant information across specialties and clinical settings.

Methods: Statistical language models augmented with semantic similarity measures were evaluated as a means to detect and quantify clinically relevant new and redundant information over longitudinal clinical notes for a given patient. A corpus of 591 progress notes over 40 inpatient admissions was annotated for new information longitudinally by physicians to generate a reference standard. Note redundancy between various specialties was evaluated on 71,021 outpatient notes and 64,695 inpatient notes from 500 solid organ transplant patients (April 2015 through August 2015).

Results: Our best method achieved at best performance of 0.87 recall, 0.62 precision, and 0.72 F-measure. Addition of semantic similarity metrics compared to baseline improved recall but otherwise resulted in similar performance. While outpatient and inpatient notes had relatively similar levels of high redundancy (61% and 68%, respectively), redundancy differed by author specialty with mean redundancy of 75%, 66%, 57%, and 55% observed in pediatric, internal medicine, psychiatry and surgical notes, respectively.

Conclusions: Automated techniques with statistical language models for detecting redundant versus clinically relevant new information in clinical notes do not improve with the addition of semantic similarity measures. While levels of redundancy seem relatively similar in the inpatient and ambulatory settings in the Fairview Health Services, clinical note redundancy appears to vary significantly with different medical specialties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506580PMC
http://dx.doi.org/10.1186/s12911-017-0464-yDOI Listing

Publication Analysis

Top Keywords

clinically relevant
20
clinical notes
20
relevant clinical
12
semantic similarity
12
notes
10
clinical
8
statistical language
8
language models
8
similarity measures
8
note redundancy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!