AI Article Synopsis

  • The study develops predictive models using electronic health record data to identify risk factors for pressure ulcers in ICU patients.
  • A three-stage framework is utilized: feature extraction with clinician input, feature simplification, and Bayesian network model building.
  • The resulting models from 7,717 ICU patients significantly improve prediction sensitivity of pressure ulcer risk factors compared to traditional methods, aiding clinicians in understanding and exploring these relationships.

Article Abstract

Background: We develop predictive models enabling clinicians to better understand and explore patient clinical data along with risk factors for pressure ulcers in intensive care unit patients from electronic health record data. Identifying accurate risk factors of pressure ulcers is essential to determining appropriate prevention strategies; in this work we examine medication, diagnosis, and traditional Braden pressure ulcer assessment scale measurements as patient features. In order to predict pressure ulcer incidence and better understand the structure of related risk factors, we construct Bayesian networks from patient features. Bayesian network nodes (features) and edges (conditional dependencies) are simplified with statistical network techniques. Upon reviewing a network visualization of our model, our clinician collaborators were able to identify strong relationships between risk factors widely recognized as associated with pressure ulcers.

Methods: We present a three-stage framework for predictive analysis of patient clinical data: 1) Developing electronic health record feature extraction functions with assistance of clinicians, 2) simplifying features, and 3) building Bayesian network predictive models. We evaluate all combinations of Bayesian network models from different search algorithms, scoring functions, prior structure initializations, and sets of features.

Results: From the EHRs of 7,717 ICU patients, we construct Bayesian network predictive models from 86 medication, diagnosis, and Braden scale features. Our model not only identifies known and suspected high PU risk factors, but also substantially increases sensitivity of the prediction - nearly three times higher comparing to logistical regression models - without sacrificing the overall accuracy. We visualize a representative model with which our clinician collaborators identify strong relationships between risk factors widely recognized as associated with pressure ulcers.

Conclusions: Given the strong adverse effect of pressure ulcers on patients and the high cost for treating pressure ulcers, our Bayesian network based model provides a novel framework for significantly improving the sensitivity of the prediction model. Thus, when the model is deployed in a clinical setting, the caregivers can suitably respond to conditions likely associated with pressure ulcer incidence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506589PMC
http://dx.doi.org/10.1186/s12911-017-0471-zDOI Listing

Publication Analysis

Top Keywords

risk factors
24
pressure ulcers
20
bayesian network
20
predictive models
16
electronic health
12
pressure ulcer
12
associated pressure
12
pressure
10
ulcers intensive
8
intensive care
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!