The Role of Lipid Bodies in the Microglial Aging Process and Related Diseases.

Neurochem Res

State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, DongdanSantiao 5# Dongcheng District, Beijing, 100730, China.

Published: November 2017

Lipid bodies (LBs) have long been considered to be organelles merely for the storage of neutral lipids. However, recent studies have shown the significance of LBs in signal transduction, especially in glial cells, including microglia. Microglial cells are the resident mononuclear phagocytes in the central nervous system and have a close relationship with the aging process and neurodegenerative diseases. Evidence suggests that LBs accumulate and are remodeled during the aging process and the development of neuroinflammatory conditions. However, the mechanisms underlying the formation of LBs under these conditions and the mechanism by which LB remodeling influences the progression of neurodegeneration remain to be clarified. In this review, we have summarized the findings from recent studies with the aim of further elucidating these issues.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-017-2351-4DOI Listing

Publication Analysis

Top Keywords

aging process
12
lipid bodies
8
role lipid
4
bodies microglial
4
microglial aging
4
process diseases
4
diseases lipid
4
lbs
4
bodies lbs
4
lbs long
4

Similar Publications

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

Background: White matter (WM) is a principal component of the human brain, forming the structural basis for neural transmission between cortico-cortical and subcortical structures. The impairment of WM integrity is closely associated with the aging process, manifesting as the reorganization of brain networks based on graph theoretical analysis of complex networks and increased volume of white matter hyperintensities (WMHs) in imaging studies.

Methods: This study investigated changes in the robustness of WM brain networks during aging and assessed their correlation with WMHs.

View Article and Find Full Text PDF

Background: Food image recognition, a crucial step in computational gastronomy, has diverse applications across nutritional platforms. Convolutional neural networks (CNNs) are widely used for this task due to their ability to capture hierarchical features. However, they struggle with long-range dependencies and global feature extraction, which are vital in distinguishing visually similar foods or images where the context of the whole dish is crucial, thus necessitating transformer architecture.

View Article and Find Full Text PDF

Sarcopenia, an age-related decline in skeletal muscle mass, strength, and function, is increasingly recognized as a significant condition in the aging population, particularly among those with cardiovascular diseases (CVD). This review provides a comprehensive synthesis of the interplay between sarcopenia and cardiogeriatrics, emphasizing shared mechanisms such as chronic low-grade inflammation (inflammaging), hormonal dysregulation, oxidative stress, and physical inactivity. Despite advancements in diagnostic frameworks, such as the EWGSOP2 and AWGS definitions, variability in criteria and assessment methods continues to challenge standardization.

View Article and Find Full Text PDF

Nrf2 Activation as a Therapeutic Target for Flavonoids in Aging-Related Osteoporosis.

Nutrients

January 2025

College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA.

Biological aging is a substantial change that leads to different diseases, including osteoporosis (OP), a condition involved in loss of bone density, deterioration of bone structure, and increased fracture risk. In old people, there is a natural decline in bone mineral density (BMD), exacerbated by hormonal changes, particularly during menopause, and it continues in the early postmenopausal years. During this transition time, hormonal alterations are linked to elevated oxidative stress (OS) and decreased antioxidant defenses, leading to a significant increase in OP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!