The fibronectin leucine rich transmembrane (FLRT) protein family consists in humans of 3 proteins, FLRT1, -2, and -3. The FLRT proteins contain two extracellular domains separated by an unstructured linker. The most membrane distal part is a leucine rich repeat (LRR) domain responsible for both and -interactions, whereas the membrane proximal part is a fibronectin type III (FnIII) domain responsible for a -interaction with members of the fibroblast growth factor receptor 1 (FGFR1) family, which results in FGFR tyrosine kinase activation. Whereas the structures of FLRT LRR domains from various species have been determined, the expression and purification of recombinant FLRT FnIII domains, important steps for further structural and functional characterizations of the proteins, have not yet been described. Here we present a protocol for expressing recombinant FLRT-FnIII domains in inclusion bodies in . His-tags permitted affinity purification of the domains, which subsequently were refolded on a Ni-NTA agarose column by reducing the concentration of urea. The refolding was confirmed by circular dichroism (CD) and H-NMR. By thermal unfolding experiments we show that a strand-strand cystine bridge has significant effect on the stability of the FLRT FnIII fold. We further show by Surface Plasmon Resonance that all three FnIII domains bind to FGFR1, and roughly estimate a for each domain, all s being in the µM range.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5502089PMC
http://dx.doi.org/10.7717/peerj.3550DOI Listing

Publication Analysis

Top Keywords

leucine rich
12
fibronectin type
8
type iii
8
fibronectin leucine
8
rich transmembrane
8
domain responsible
8
flrt fniii
8
fniii domains
8
domains
7
flrt
5

Similar Publications

The resistance () gene family in plants is a vital component of the plant defense system, enabling host resistance against pathogens through interactions with pathogen effector proteins. These R genes often encode nucleotide-binding (NB-ARC or N) and leucine-rich-repeat (LRR or L) domains, collectively forming the NLR protein family. The NLR proteins have been widely explored in crops from and , but limited studies are available for crops in other families, including .

View Article and Find Full Text PDF

The nucleotide-binding domain, leucine-rich repeat, and pyrin domain containing-protein 3 (NLRP3) inflammasome is a multiprotein complex that plays a critical role in the innate immune response to both infections and sterile stressors. Dysregulated NLRP3 activation has been implicated in a variety of autoimmune and inflammatory diseases, including cryopyrin-associated periodic fever syndromes, diabetes, atherosclerosis, Alzheimer's disease, inflammatory bowel disease, and cancer. Consequently, fine-tuning NLRP3 activity holds significant therapeutic potential.

View Article and Find Full Text PDF

Mutations that increase LRRK2 kinase activity have been linked to Parkinson's disease and Crohn's disease. LRRK2 is also activated by lysosome damage. However, the endogenous cellular mechanisms that control LRRK2 kinase activity are not well understood.

View Article and Find Full Text PDF

Assembly and functional mechanisms of plant NLR resistosomes.

Curr Opin Struct Biol

January 2025

School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China. Electronic address:

Nucleotide-binding and leucine-rich repeat (NLR) proteins are essential intracellular immune receptors in both animal and plant kingdoms. Sensing of pathogen-derived signals induces oligomerization of NLR proteins, culminating in the formation of higher-order protein complexes known as resistosomes in plants. The NLR resistosomes play a pivotal role in mediating the plant immune response against invading pathogens.

View Article and Find Full Text PDF

Ovarian tissue cryopreservation addresses critical challenges in fertility preservation for prepubertal female cancer patients, such as the lack of viable eggs and hormonal deficiencies. However, mitigating follicle and granulosa cell damage during freeze-thaw cycles remains an urgent issue. Luteinizing hormone (LH), upon binding to luteinizing hormone receptors (LHR) on granulosa cells, enhances estrogen synthesis and secretion, contributing to the growth of granulosa cells and follicles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!