Advances in detection of genetic material from species in aquatic ecosystems, including environmental DNA (eDNA), have improved species monitoring and management. eDNA from target species can readily move in streams and rivers and the goal is to measure it, and with that infer where and how abundant species are, adding great value to delimiting species invasions, monitoring and protecting rare species, and estimating biodiversity. To date, we lack an integrated framework that identifies environmental factors that control eDNA movement in realistic, complex, and heterogeneous flowing waters. To this end, using an empirical approach and a simple conceptual model, we propose a framework of how eDNA is transported, retained, and resuspended in stream systems. Such an understanding of eDNA dispersal in streams will be essential for designing optimized sampling protocols and subsequently estimating biomass or organismal abundance. We also discuss guiding principles for more effective use of eDNA methods, highlighting the necessity of understanding these parameters for use in future predictive modeling of eDNA transport.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506058PMC
http://dx.doi.org/10.1038/s41598-017-05223-1DOI Listing

Publication Analysis

Top Keywords

edna movement
8
edna
7
species
6
controls edna
4
movement streams
4
streams transport
4
transport retention
4
retention resuspension
4
resuspension advances
4
advances detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!