We detail an extensive characterisation study on a previously described dual amperometric H₂O₂ biosensor consisting of H₂O₂ detection (blank) and degradation (catalase) electrodes. In vitro investigations demonstrated excellent H₂O₂ sensitivity and selectivity against the interferent, ascorbic acid. Ex vivo studies were performed to mimic physiological conditions prior to in vivo deployment. Exposure to brain tissue homogenate identified reliable sensitivity and selectivity recordings up to seven days for both blank and catalase electrodes. Furthermore, there was no compromise in pre- and post-implanted catalase electrode sensitivity in ex vivo mouse brain. In vivo investigations performed in anaesthetised mice confirmed the ability of the H₂O₂ biosensor to detect increases in amperometric current following locally perfused/infused H₂O₂ and antioxidant inhibitors mercaptosuccinic acid and sodium azide. Subsequent recordings in freely moving mice identified negligible effects of control saline and sodium ascorbate interference injections on amperometric H₂O₂ current. Furthermore, the stability of the amperometric current was confirmed over a five-day period and analysis of 24-h signal recordings identified the absence of diurnal variations in amperometric current. Collectively, these findings confirm the biosensor current responds in vivo to increasing exogenous and endogenous H₂O₂ and tentatively supports measurement of H₂O₂ dynamics in freely moving NOD SCID mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539478PMC
http://dx.doi.org/10.3390/s17071596DOI Listing

Publication Analysis

Top Keywords

amperometric current
12
h₂o₂
9
characterisation study
8
amperometric h₂o₂
8
h₂o₂ biosensor
8
catalase electrodes
8
sensitivity selectivity
8
freely moving
8
vivo
7
amperometric
5

Similar Publications

Carbon dots in biosensing have advanced significantly, adding improvements to different detection techniques. In this study, an amperometric immunosensor for Salmonella Thyphimurium was designed using antibodies labeled with carbon dots (Cdots) from pequi almond (Caryocar brasiliensis). Cdots were synthesized by pyrolysis and characterized by FTIR, UV/fluorescence, electrochemistry, zeta potential, and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Early detection of hepatitis C virus (HCV) infection is crucial for eliminating this silent killer, especially in resource-limited settings. HCV core antigen (HCVcAg) represents a promising alternative to the current "gold standard" HCV RNA assays as an active viremia biomarker. Herein, a highly sensitive electrochemical magneto-immunosensor for the HCVcAg was developed.

View Article and Find Full Text PDF

Aminated carbon nanotubes, CNT, were covalently modified with glutardialdehyde (GDI) and the redox dye Azure to form a new electrode material CNT-GDI-Azure (CGA). The nanocomposite of CGA and polysaccharide chitosan was used for the anodic determination of NADH. Compared to conventional carbon and metal electrodes, the CGA electrode drastically lowered the overpotential for NADH oxidation (by > 0.

View Article and Find Full Text PDF

Synergistic effect of Zr MOF modified functionalized carbon nano fibres for determination of tert-butylhydroquinone in food samples.

Food Chem

December 2024

International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Research Center for Intelligence Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India. Electronic address:

In modern life, people often neglect to consider their eating habits. Antioxidants are primarily used as food additives due to their stability and low toxicity. TBHQ is a commonly used antioxidant in food products as an additive.

View Article and Find Full Text PDF

Advancements in glycan analysis: high performance anion exchange chromatography-pulsed amprometric detection coupled with mass spectrometry for structural elucidation.

J Pharm Biomed Anal

December 2024

College of Pharmaceutical Sciences and Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu 215021, China. Electronic address:

Carbohydrates are essential biomolecules that play a vital role in various biological processes across humans, plants, and bacteria. Despite their ubiquity, the structural elucidation of carbohydrates, particularly oligo- and polysaccharides, remains a significant challenge due to their complex and heterogeneous nature. The high-performance anion exchange chromatography (HPAEC) or called ion chromatography (IC) coupled with pulsed amperometric detection (PAD) has emerged as a powerful tool for highly effective separation and highly specific detection of glycans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!