AI Article Synopsis

  • Ps6TG31A is an enzyme that catalyzes the breakdown and transfer of glucose units, specifically producing α-1,6-glucosyl-α-glucosaccharides from α-glucan.
  • The enzyme's structure includes a catalytic domain and multiple small domains, with specific sites designed for binding different sugars during the reaction process.
  • The presence of various carbohydrate-binding modules enhances its ability to facilitate transglucosylation by effectively positioning substrates for the reaction.

Article Abstract

sp. 598K α-1,6-glucosyltransferase (Ps6TG31A), a member of glycoside hydrolase family 31, catalyzes exo-α-glucohydrolysis and transglucosylation and produces α-1,6-glucosyl-α-glucosaccharides from α-glucan via its disproportionation activity. The crystal structure of Ps6TG31A was determined by an anomalous dispersion method using a terbium derivative. The monomeric Ps6TG31A consisted of one catalytic (β/α)-barrel domain and six small domains, one on the N-terminal and five on the C-terminal side. The structures of the enzyme complexed with maltohexaose, isomaltohexaose, and acarbose demonstrated that the ligands were observed in the catalytic cleft and the sugar-binding sites of four β-domains. The catalytic site was structured by a glucose-binding pocket and an aglycon-binding cleft built by two sidewalls. The bound acarbose was located with its non-reducing end pseudosugar docked in the pocket, and the other moieties along one sidewall serving three subsites for the α-1,4-glucan. The bound isomaltooligosaccharide was found on the opposite sidewall, which provided the space for the acceptor molecule to be positioned for attack of the catalytic intermediate covalent complex during transglucosylation. The N-terminal domain recognized the α-1,4-glucan in a surface-binding mode. Two of the five C-terminal domains belong to the carbohydrate-binding modules family 35 and one to family 61. The sugar complex structures indicated that the first family 35 module preferred α-1,6-glucan, whereas the second family 35 module and family 61 module preferred α-1,4-glucan. Ps6TG31A appears to have enhanced transglucosylation activity facilitated by its carbohydrate-binding modules and substrate-binding cleft that positions the substrate and acceptor sugar for the transglucosylation.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BCJ20170152DOI Listing

Publication Analysis

Top Keywords

family module
12
produces α-16-glucosyl-α-glucosaccharides
8
carbohydrate-binding modules
8
module preferred
8
family
6
carbohydrate-binding architecture
4
architecture multi-modular
4
multi-modular α-16-glucosyltransferase
4
α-16-glucosyltransferase 598k
4
598k produces
4

Similar Publications

Protein Phosphatase 2A B'α and B'β promote pollen wall construction partially through BZR1-activated CEP1 in Arabidopsis.

J Exp Bot

January 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.

A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.

View Article and Find Full Text PDF

Study of the SPL gene family and miR156-SPL module in Populus tomentosa: Potential roles in juvenile-to-adult phase transition and reproductive phase.

Int J Biol Macromol

January 2025

State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China. Electronic address:

Populus tomentosa, a deciduous tree species distinguished by its significant economic and ecological value, enjoys a wide-ranging natural distribution. However, its long juvenile period severely restricts the advancement of breeding work. The SPL gene family, a distinctive class of transcription factors exclusive to the plant kingdom, is critical in various processes of plant growth and development.

View Article and Find Full Text PDF

Developing a patient toolkit for opioid use and management through co-creation.

Patient Educ Couns

January 2025

Office of Professional Development and Educational Scholarship, Queen's University, 385 Princess Street, Kingston, ON K7L 1B9, Canada.

Canada has been experiencing an opioid use crisis, and urgent efforts are being made to stem the tide. With funding support from Health Canada, the Association of Faculties of Medicine of Canada (AFMC) recently developed a series of asynchronous online bilingual modules to educate key players across the medical education spectrum on chronic pain and opioid use. The curriculum for the modules which informed the development of the Patient-Physician Partnership Toolkit was co-created through an authentic collaboration between healthcare professionals (HCPs), and patient subject matter experts who were patients with lived experience.

View Article and Find Full Text PDF

Background: In India, approximately 3.5 million children are affected by Developmental Delay (DD), often stemming from preterm births. These delays contribute to neurological and motor development delays, placing a significant financial burden on families.

View Article and Find Full Text PDF

Background: Mining functional gene modules from genomic data is an important step to detect gene members of pathways or other relations such as protein-protein interactions. This work explores the plausibility of detecting functional gene modules by factorizing gene-phenotype association matrix from the phenotype ontology data rather than the conventionally used gene expression data. Recently, the hierarchical structure of phenotype ontologies has not been sufficiently utilized in gene clustering while functionally related genes are consistently associated with phenotypes on the same path in phenotype ontologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!