Glycyrrhetinic acid-modified TPGS polymeric micelles for hepatocellular carcinoma-targeted therapy.

Int J Pharm

State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China. Electronic address:

Published: August 2017

In this study, glycyrrhetinic acid (GA)-modified D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) polymeric micelles (TGA PMs) were developed for the delivery of etoposide (ETO) to hepatoma cells. GA was incorporated as a ligand because of its high affinity to the hepatocytes, while TPGS functioned as a P-gp inhibitor to reverse multidrug resistance. ETO-loaded TGA PMs (ETO-TGA PMs) displayed a mean particle size of 133.6±1.2nm with a low poly-dispersity index (0.224±0.013) and negative zeta potential (-16.30mV). The drug loading and entrapment efficiency of ETO-TGA PMs were 10.4% and 79.8%, respectively. ETO-TGA PMs also exhibited faster drug release behavior at pH 5.8 and relatively stable drug release at pH 7.4. Confocal laser scanning microscope (CLSM) observations and in vivo imaging studies revealed that TGA PMs displayed higher cellular uptake and selective accumulation at the tumor site, indicating good tumor targetability. Furthermore, ETO-TGA PMs displayed significant cytotoxicity towards HepG2 cells and higher anti-tumor efficacy (75.96%), compared to the control group. This could be due to TGA-mediated targeted drug delivery to the hepatocytes as well as P-gp inhibition. These findings suggest that TGA PMs have the potential to be used as a targeted drug delivery system for hepatic cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2017.07.011DOI Listing

Publication Analysis

Top Keywords

tga pms
16
eto-tga pms
16
pms displayed
12
tpgs polymeric
8
polymeric micelles
8
pms
8
drug release
8
targeted drug
8
drug delivery
8
drug
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!