Comparison of HCV viral load and its genotype distributions in HCV mono- and HIV/HCV co-infected illicit drug users.

Virol J

Department of Virology, Professor Alborzi Clinical Microbiology Research Center, Nemazi Hospital, Shiraz University of Medical Sciences, P. O. Box: 31, Shiraz, 71937-11351, Iran.

Published: July 2017

Background: Because of shared modes of transmission, patients with hepatitis C virus (HCV) infection are often co-infected with other types of hepatitis viruses and/or HIV. We studied HCV viral load and its genotype patterns among HCV mono- and HCV/HIV co-infected Illicit Drug Users in Fars province-Iran.

Methods: Totally, 580 HCV seropositive IDUs referred to Prof. Alborzi Clinical Microbiology Research Center, Shiraz, Iran, without receiving any anti-HCV treatment, were enrolled. After their HCV infections were reconfirmed by one step rapid diagnostic test, HCV RNA level and HCV genotypes were determined by Taq-man real-time PCR assays. Their HIV serostatus was determined and seropositive patients were excluded from the group. In addition, 104 HIV/HCV co-infected IDUs referred from Shiraz Behavioral Diseases Consultation Center (SBDC) were assessed for HCV RNA level and HCV genotype patterns, as well.

Results: The overall estimated HIV prevalence was 6.7% (39/580) among HCV seropositive IDUs. Genotype 1, the most prevalent genotype in both groups, was detected in 69% and 49% of co- and mono-infected IDUs, respectively. Median HCV viral load was significantly higher in HIV/HCV co-infected patients, compared with that among HCV mono-infected counterparts.

Conclusions: Given the higher baseline HCV viral load and GT1 attributed to poorer treatments response, HCV treatment must be more considered among HCV/HIV co-infected IDUs, compared to those mono-infected with HCV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5505147PMC
http://dx.doi.org/10.1186/s12985-017-0797-2DOI Listing

Publication Analysis

Top Keywords

hcv viral
16
viral load
16
hcv
16
hiv/hcv co-infected
12
load genotype
8
hcv mono-
8
co-infected illicit
8
illicit drug
8
drug users
8
genotype patterns
8

Similar Publications

Chronic hepatitis C virus (HCV) infection poses a major health risk worldwide, with patients susceptible to liver cirrhosis and hepatocellular carcinoma. This study focuses on the development of effective therapeutic strategies for HCV infection through the investigation of immunogenic properties of a DNA construct based on the NS3/4A gene of HCV genotype (g)3a. Gene expression of the mutagenized (mut) NS3/4A target genes was assessed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis.

View Article and Find Full Text PDF

Background: Tissue damage by viral hepatitis is a major cause of morbidity and mortality worldwide. Oxidation reactions and reactive oxygen species (ROS) transform proteins and lipids in plasma low-density lipoproteins (LDL) into the abnormal oxidized LDL (ox-LDL). Hepatitis C virus (HCV) infection induces oxidative/nitrosative stress from multiple sources, including the inducible nitric oxide synthase (iNOS), the mitochondrial electron transport chain, hepatocyte NAD(P)H oxidases (NOX enzymes), and inflammation.

View Article and Find Full Text PDF

Background: Chronic hepatitis C virus (HCV) infection affects >1% of the U.S. population, higher among U.

View Article and Find Full Text PDF

Objective: This study aimed to assess the potential antifibrotic impact of zinc sulfate in chronic Hepatitis C Virus (HCV) patients receiving direct-acting antiviral therapy.

Methods: This randomized controlled study included 50 chronic HCV-infected patients with fibrosis stage (F1 & F2). Participants were randomly assigned to two groups: Group 1 (Control group, n = 25) received standard direct-acting antiviral therapy for 3 months, while Group 2 (Zinc group, n = 25) received 50 mg/day of zinc sulfate in addition to the standard direct-acting antiviral therapy for the same duration.

View Article and Find Full Text PDF

Resistance-associated substitutions (RASs) are mutations within the hepatitis C (HCV) genome that may influence the likelihood of achieving a sustained virological response (SVR) with direct acting antiviral (DAA) treatment. Clinicians conduct RAS testing to adapt treatment regimens with the intent of improving the likelihood of cure. The Canadian Network Undertaking against Hepatitis C (CANUHC) prospective cohort consists of chronic HCV patients enrolled between 2015 and 2023 across 17 Canadian sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!