Remodelling of lymphatic vessels in tumours facilitates metastasis to lymph nodes. The growth factors VEGF-C and VEGF-D are well known inducers of lymphatic remodelling and metastasis in cancer. They are initially produced as full-length proteins requiring proteolytic processing in order to bind VEGF receptors with high affinity and thereby promote lymphatic remodelling. The fibrinolytic protease plasmin promotes processing of VEGF-C and VEGF-D in vitro, but its role in processing them in cancer was unknown. Here we explore plasmin's role in proteolytically activating VEGF-D in vivo, and promoting lymphatic remodelling and metastasis in cancer, by co-expressing the plasmin inhibitor α-antiplasmin with VEGF-D in a mouse tumour model. We show that α-antiplasmin restricts activation of VEGF-D, enlargement of intra-tumoural lymphatics and occurrence of lymph node metastasis. Our findings indicate that the fibrinolytic system influences lymphatic remodelling in tumours which is consistent with previous clinicopathological observations correlating fibrinolytic components with cancer metastasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08977194.2017.1349765 | DOI Listing |
J Control Release
January 2025
Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China. Electronic address:
Treatment of myocardial ischemia-reperfusion (MI/R) injury still faces the lack of clinically approved drugs. Apelin-13 is a highly promising drug candidate of MI/R injury, but hampered by its extremely short half-life in plasma. This calls for efficient and smart delivering system for Apelin-13 delivery, but has not been reported.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada. Electronic address:
Lymphedema is characterized by the swelling of extremities due to the accumulation of interstitial fluids. It is a painful and devastating disease that increases the risk of infections and destroys patients' quality of life. Secondary lymphedema is caused by damage to the lymphatic system due to infections, obesity, surgery, and cancer treatments.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Internal Medicine II, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany.
Spheroid culture systems have been extensively used to model the three-dimensional (3D) behavior of cells in vitro. Traditionally, spheroids consist of a single cell type, limiting their ability to fully recapitulate the complex inter-cellular interactions observed in vivo. Here we describe a protocol for generating cocultured spheroids composed of two distinct cell types, embedded within a 3D extracellular matrix (ECM) to better study cellular interactions.
View Article and Find Full Text PDFElife
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
Trained immunity (TI) is the process wherein innate immune cells gain functional memory upon exposure to specific ligands or pathogens, leading to augmented inflammatory responses and pathogen clearance upon secondary exposure. While the differentiation of hematopoietic stem cells (HSCs) and reprogramming of bone marrow (BM) progenitors are well-established mechanisms underpinning durable TI protection, remodeling of the cellular architecture within the tissue during TI remains underexplored. Here, we study the effects of peritoneal Bacillus Calmette-Guérin (BCG) administration to find TI-mediated protection in the spleen against a subsequent heterologous infection by the Gram-negative pathogen Typhimurium (.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
Lymphedema, a severe and complex inflammatory disease caused by lymphatic system insufficiency and impeded lymphatic drainage that causes an enormous physical and psychological burden on patients and may even lead to death, has long been a challenging issue in the medical field. Clinically, conventional approaches including surgical treatment and conservative treatment have been employed for lymphedema therapy, but their curative effect is still unsatisfactory because of high operational difficulty, high cost, and long-term reliance. In this study, a novel kind of piezoelectric microneedle driven by ultrasound (US) is proposed to regulate macrophage polarization and remodel the pathological inflammatory microenvironment in a noninvasive manner, thereby promoting lymphatic regeneration and improving lymphedema.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!