Alzheimer's disease (AD) is characterized by a cascade of pathological processes that can be assessed in vivo using different neuroimaging methods. Recent research suggests a systematic sequence of pathogenic events on a global biomarker level, but little is known about the associations and dependencies of distinct lesion patterns on a regional level. Markov random fields are a probabilistic graphical modeling approach that represent the interaction between individual random variables by an undirected graph. We propose the novel application of this approach to study the interregional associations and dependencies between multimodal imaging markers of AD pathology and to compare different hypotheses regarding the spread of the disease. We retrieved multimodal imaging data from 577 subjects enrolled in the Alzheimer's Disease Neuroimaging Initiative. Mean amyloid load (AV45-PET), glucose metabolism (FDG-PET), and gray matter volume (MRI) were calculated for the six principle nodes of the default mode network- a functional network of brain regions that appears to be preferentially targeted by AD. Multimodal Markov random field models were developed for three different hypotheses regarding the spread of the disease: the "intraregional evolution model", the "trans-neuronal spread" hypothesis, and the "wear-and-tear" hypothesis. The model likelihood to reflect the given data was evaluated using tenfold cross-validation with 1,000 repetitions. The most likely graph structure contained the posterior cingulate cortex as main hub region with edges to various other regions, in accordance with the "wear-and-tear" hypothesis of disease vulnerability. Probabilistic graphical models facilitate the analysis of interactions between several variables in a network model and therefore afford great potential to complement traditional multiple regression analyses in multimodal neuroimaging research.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-161197DOI Listing

Publication Analysis

Top Keywords

hypotheses spread
12
alzheimer's disease
12
markov random
12
multimodal imaging
12
random fields
8
associations dependencies
8
probabilistic graphical
8
spread disease
8
"wear-and-tear" hypothesis
8
disease
6

Similar Publications

Recombination is advantageous over the long-term, as it allows efficient selection and purging deleterious mutations. Nevertheless, recombination suppression has repeatedly evolved in sex and mating-type chromosomes. The evolutionary causes for recombination suppression and the proximal mechanisms preventing crossing overs are poorly understood.

View Article and Find Full Text PDF

Many cellular functions depend on the physical properties of the cell's environment. Many bacteria have different types of surface appendages to enable adhesion and motion on various surfaces. is a social soil bacterium with two distinctly regulated modes of surface motility, termed the social motility mode, driven by type IV pili, and the adventurous motility mode, based on focal adhesion complexes.

View Article and Find Full Text PDF

In Alzheimer's disease (AD), amyloid-β (Aβ) triggers the aggregation and spreading of tau pathology, which drives neurodegeneration and cognitive decline. However, the pathophysiological link between Aβ and tau remains unclear, which hinders therapeutic efforts to attenuate Aβ-related tau accumulation. Aβ has been found to trigger neuronal hyperactivity and hyperconnectivity, and preclinical research has shown that tau spreads across connected neurons in an activity-dependent manner.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with a wide range of clinical phenotypes. Pathologically, it is characterized by neuronal inclusions containing misfolded, fibrillar alpha-synuclein (aSyn). Prion-like properties of aSyn contribute to the spread of aSyn pathology throughout the nervous system as the disease progresses.

View Article and Find Full Text PDF

Melanoma brain metastasis (MBM) is linked to dismal prognosis, low overall survival, and is detected in up to 80% of patients at autopsy. Circulating tumor cells (CTCs) are the smallest functional units of cancer and precursors of fatal metastasis. We previously employed an unbiased multilevel approach to discover a unique ribosomal protein large/small subunits (RPL/RPS) CTC gene signature associated with MBM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!