This study investigated the effects of fluoride exposure on the mRNA expression of Cav1.2 calcium signaling pathway and apoptosis regulatory molecules in PC12 cells. The viability of PC12 cell receiving high fluoride (5.0mM) and low fluoride (0.5mM) alone or fluoride combined with L-type calcium channel (LTCC) agonist/inhibitor (5umol/L FPL6417/2umol/L nifedipine) was detected using cell counting kit-8 at different time points (2, 4, 6, 8, 12, 10, and 24h). Changes in the cell configuration were observed after exposing the cells to fluoride for 24h. The expression levels of molecules related to the LTCC were examined, particularly, Cav1.2, c-fos, CAMK II, Bax, and Bcl-2. Fluoride poisoning induced severe cell injuries, such as decreased PC12 cell activity, enhanced cell apoptosis, high c-fos, CAMKII, and Bax mRNA expression levels. Bcl-2 expression level was also reduced. Meanwhile, high fluoride, high fluoride with FPL64176, and low fluoride with FPL64176 enhanced the Cav1.2 expression level. In contrast, low fluoride, high fluoride with nifedipine, and low fluoride with nifedipine reduced the Cav1.2 expression level. Thus, Cav1.2 may be an important molecular target for the fluorosis treatment, and the LTCC inhibitor nifedipine may be an effective drug for fluorosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.etap.2017.06.018 | DOI Listing |
Small
January 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
Establishing the relationship between catalytic performance and material structure is crucial for developing design principles for highly active catalysts. Herein, a type of perovskite fluoride, NHMnF, which owns strong-field coordination including fluorine and ammonia, is in situ grown on carbon nanotubes (CNTs) and used as a model structure to study and improve the intrinsic catalytic activity through heteroatom doping strategies. This approach optimizes spin-dependent orbital interactions to alter the charge transfer between the catalyst and reactants.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
Layered transition metal oxides (LTMOs) are attractive cathode candidates for rechargeable secondary batteries because of their high theoretical capacity. Unfortunately, LTMOs suffer from severe capacity attenuation, voltage decay, and sluggish kinetics, resulting from irreversible lattice oxygen evolution and unstable cathode-electrolyte interface. Besides, LTMOs accumulate surface residual alkali species, like hydroxides and carbonates, during synthesis, limiting their practical application.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
Purpose: The purpose of this study is to develop an innovative solution for chronic wounds in high-mobility areas, such as joints, where conventional treatments are hindered by passive healing mechanisms and the need for immobilization. By designing a micro-electro-Nanofiber dressing composed of piezoelectric polyvinylidene fluoride (PVDF) integrated with antimicrobial silver nanoparticles (AgNPs), this research aims to address the dual challenges of promoting effective wound healing and maintaining joint mobility.
Methods: Herein, we developed a novel micro-electro-Nanofiber dressing using electrospinning technology, incorporating polyvinylidene fluoride (PVDF) with silver nanoparticles (AgNPs).
BMC Oral Health
January 2025
Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
Objective: To investigate the education, knowledge and behaviour of Italian dentists regarding Silver Diamine Fluoride (SDF).
Methods: A cross-sectional study was conducted from January to December 2022, through an online survey linked to an online continuing medical education (CME) course sent to Italian dentists. A priori power analysis estimated the necessary sample to be 1480 dentists with an anticipated frequency of 50% and a power of 99.
Environ Technol
January 2025
Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, India.
Inorganic anions such as chloride (Cl), nitrate (), sulfate (), carbonate (), bicarbonate (), dihydrogen phosphate (), fluoride (F) are ubiquitous in water matrices, play a significant role in the degradation of organic pollutants by Fenton process. In the present study, the performance of Fenton process in the presence of these anions was studied using phenol as a model compound along with the underlying mechanism and their tolerance limit. The presence of these anions affects the rate constant of the Fenton process and decreases in the following order, ---Cl > > > > F.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!