A convection heat treatment that can replace existing chemical oxidation methods was developed for the preparation of hierarchically oxidized Cu meshes with various surface morphologies, representing a very simple and green route that does not involve toxic chemicals. Three types of Cu meshes [bumpy-like (BL) and short and long needle-like (NL) structures] exhibited similar separation efficiencies of 95-99% over 20 separation cycles, as indicated by their similar water contact angles (WCAs; 147-150°). However, these Cu meshes exhibited different flux behaviors. Excessively rough and excessively smooth surfaces of the Cu mesh resulted in increased resistance to flow and to a decrease of the penetration of oil. A surface with intermediate smoothness, such as the BL-Cu mesh, was necessary for high flux over a broad range of oil viscosities. Furthermore, a less rough surface was more suitable for the separation of highly viscous oil. Computational fluid dynamics (CFD) simulations were carried out to support our experimental results. The BL-Cu meshes also showed outstanding mechanical stability because of their low resistance to the flow of fluids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.7b01800 | DOI Listing |
Bioinform Adv
December 2024
Structural and Computational Biology Group, Nutritional and Industrial Biochemistry Research Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria.
Motivation: Investigating novel drug-target interactions is crucial for expanding the chemical space of emerging therapeutic targets in human diseases. Herein, we explored the interactions of dipeptidyl peptidase-4 and protein tyrosine phosphatase 1B with selected terpenoids from African antidiabetic plants.
Results: Using molecular docking, molecular dynamics simulations, molecular mechanics with generalized Born and surface area solvation-free energy, and density functional theory analyses, the study revealed dipeptidyl peptidase-4 as a promising target.
Front Bioeng Biotechnol
January 2025
Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Background: Currently, some novel rods with lower elastic modulus have the potential as alternatives to traditional titanium alloy rods in lumbar fusion. However, how the elastic modulus of the rod (rod-E) influences the biomechanical performance of lumbar interbody fusion remains unclear. This study aimed to explore the quantitative relationships between rod-E and the biomechanical performance of transforaminal lumbar interbody fusion (TLIF).
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany.
Background: With the help of superparamagnetic iron oxide nanoparticles (SPIONs), cells can be magnetically directed so that they can be accumulated at target sites. This principle can be used to make monocytes magnetically steerable in order to improve tumor accumulation, e.g.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
Background: Microfracture drilling is a surgical technique that involves creating multiple perforations in areas of cartilage defects to recruit stem cells from the bone marrow, thereby promoting cartilage regeneration in the knee joint. Increasing the exposed bone marrow surface area (more holes in the same area) can enhance stem cell outflow. However, when the exposed area is large, it may affect the mechanical strength of the bone at the site of the cartilage defect.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Economics and Management, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
The anthocyanin-loaded films based on natural polymers as pH-responsive indicator are widely applied in the food preservation. However, the low mechanical strength and storage stability limited their practical application, there is an urgent demand to improve the performance of anthocyanin-loaded films. In order to avoid affecting the color indication of anthocyanins, we explored the effect of eight kinds of white nanomaterials on improving the performance of films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!