Highly Conductive Polypropylene-Graphene Nonwoven Composite via Interface Engineering.

Langmuir

The Nonwovens Institute, North Carolina State University, Raleigh, North Carolina 27606, United States.

Published: August 2017

Here we report a highly conductive polypropylene-graphene nonwoven composite via direct coating of melt blown polypropylene (PP) nonwoven fabrics with graphene oxide (GO) dispersions in N,N-dimethylformamide (DMF), followed by the chemical reduction of GO with hydroiodic acid (HI). GO as an amphiphilic macromolecule can be dispersed in DMF homogeneously at a concentration of 5 mg/mL, which has much lower surface tension (37.5 mN/m) than that of GO in water (72.9 mN/m, at 5 mg/mL). The hydrophobic PP nonwoven has a surface energy of 30.1 mN/m, close to the surface tension of GO in DMF. Therefore, the PP nonwoven can be easily wetted by the GO/DMF dispersion without any pretreatment. Soaking PP nonwoven in a GO/DMF dispersion leads to uniform coatings of GO on PP-fiber surfaces. After chemical reduction of GO to graphene, the resulting PP/graphene nonwoven composite offers an electrical conductivity of 35.6 S m at graphene loading of 5.2 wt %, the highest among the existing conductive PP systems reported, indicating that surface tension of coating baths has significant impact on the coating uniformity and affinity. The conductivity of our PP/graphene nonwoven is also stable against stirring washing test. In addition, here we demonstrate a monolithic supercapacitor derived from the PP-GO nonwoven composite by using a direct laser-patterning process. The resulted sandwich supercapacitor shows a high areal capacitance of 4.18 mF/cm in PVA-HSO gel electrolyte. The resulting highly conductive or capacitive PP/graphene nonwoven carries great promise to be used as electronic textiles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.7b01508DOI Listing

Publication Analysis

Top Keywords

nonwoven composite
16
highly conductive
12
surface tension
12
pp/graphene nonwoven
12
nonwoven
10
conductive polypropylene-graphene
8
polypropylene-graphene nonwoven
8
composite direct
8
chemical reduction
8
go/dmf dispersion
8

Similar Publications

Diabetic foot, leg ulcers and decubitus ulcers affect millions of individuals worldwide leading to poor quality of life, pain and in several cases to limb amputations. Despite the global dimension of this clinical problem, limited progress has been made in developing more efficacious wound dressings, the design of which currently focusses on wound protection and control of its exudate volume. The present in vitro study systematically analysed seven types of clinically-available wound dressings made of different biomaterial composition and engineering.

View Article and Find Full Text PDF

Growth Propagation of Liquid Spawn on Non-Woven Hemp Mats to Inform Digital Biofabrication of Mycelium-Based Composites.

Biomimetics (Basel)

January 2025

Research Group Architectural Engineering, Department of Architecture, KU Leuven, 3001 Leuven, Belgium.

Mycelium-based composites (MBCs) are highly valued for their ability to transform low-value organic materials into sustainable building materials, offering significant potential for decarbonizing the construction sector. The properties of MBCs are influenced by factors such as the mycelium species, substrate materials, fabrication growth parameters, and post-processing. Traditional fabrication methods involve combining grain spawn with loose substrates in a mold to achieve specific single functional properties, such as strength, acoustic absorption, or thermal insulation.

View Article and Find Full Text PDF

Corrigendum to "Chitosan nonwoven fabric composited calcium alginate and adenosine diphosphate as a hemostatic bandage for acute bleeding wounds" [Int. J. Biol. Macromol. 257 (2024) 128561].

Int J Biol Macromol

January 2025

College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China. Electronic address:

View Article and Find Full Text PDF

Highly sensitive, breathable, and superhydrophobic dome structure nonwoven-based flexible pressure sensor utilizing machine learning for handwriting recognition.

Int J Biol Macromol

January 2025

Shaoxing Key Laboratory of High Performance Fibers & Products, Shaoxing University, Shaoxing, Zhejiang 312000, China; Shaoxing Sub-center of National Engineering Research Center for Fiber-based Composites, Shaoxing University, Zhejiang, Shaoxing 312000, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China. Electronic address:

Wearable devices that incorporate flexible pressure sensors have shown great potential for human-machine interaction, speech recognition, health monitoring, and handwriting recognition.However, achieving high sensitivity, durability, wide detection range, and breathability through cost-effective fabrication remains challenging. Through ultrasound-assisted modification and impregnation-drying, dome-structured nonwovens/rGO/PDMS flexible pressure sensors were developed.

View Article and Find Full Text PDF

COVID-19 disease, triggered by SARS-CoV-2 virus infection, has led to more than 7.0 million deaths worldwide, with a significant fraction of recovered infected people reporting postviral symptoms. Smart surfaces functionalized with nanoparticles are a powerful tool to inactivate the virus and prevent the further spreading of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!