Dimension-Controllable Microtube Arrays by Dynamic Holographic Processing as 3D Yeast Culture Scaffolds for Asymmetrical Growth Regulation.

Small

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China.

Published: September 2017

Transparent microtubes can function as unique cell culture scaffolds, because the tubular 3D microenvironment they provide is very similar to the narrow space of capillaries in vivo. However, how to realize the fabrication of microtube-arrays with variable cross-section dynamically remains challenging. Here, a dynamic holographic processing method for producing high aspect ratio (≈20) microtubes with tunable outside diameter (6-16 µm) and inside diameter (1-10 µm) as yeast culture scaffolds is reported. A ring-structure Bessel beam is modulated from a typical Gaussian-distributed femtosecond laser beam by a spatial light modulator. By combining the axial scanning of the focused beam and the dynamic display of holograms, dimension-controllable microtube arrays (straight, conical, and drum-shape) are rapidly produced by two-photon polymerization. The outside and inside diameters, tube heights, and spatial arrangements are readily tuned by loading different computer-generated holograms and changing the processing parameters. The transparent microtube array as a nontrivial tool for capturing and culturing the budding yeasts reveals the significant effect of tube diameter on budding characteristics. In particular, the conical tube with the inside diameter varying from 5 to 10 µm has remarkable asymmetrical regulation on the growth trend of captured yeasts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201701190DOI Listing

Publication Analysis

Top Keywords

culture scaffolds
12
dimension-controllable microtube
8
microtube arrays
8
dynamic holographic
8
holographic processing
8
yeast culture
8
inside diameter
8
arrays dynamic
4
processing yeast
4
scaffolds asymmetrical
4

Similar Publications

Background: Rotator cuff repairs may fail because of compromised blood supply, suture anchor pullout, or poor fixation to bone. To augment the repairs and promote healing of the tears, orthobiologics, such a platelet-rich plasma (PRP), and biologic scaffolds have been applied with mixed results. Adipose allograft matrix (AAM), which recruits native cells to damaged tissues, may also be a potential treatment for rotator cuff tears.

View Article and Find Full Text PDF

This study explored a novel modification method for porous polyetheretherketone (PEEK) implants using a biomimetic coating to achieve synergistic enhancement of vascularization and bone regeneration. Inspired by the natural extracellular matrix (ECM) structure (consists of growth factors and matrix proteins), a biomimetic dual-factor coating capable of releasing bone morphogenetic protein-2 (BMP-2) and fibronectin (FN) was coated on the surface of 3D-printed porous PEEK scaffolds using polydopamine (PDA) as a binder. Experiments conducted with MC3T3-E1 cells or HUVECs in co-culture with scaffolds revealed that the biomimetic coating not only synergically promoted cell migration, adhesion and proliferation, but also enhanced angiogenesis and osteogenic differentiation simultaneously in vivo.

View Article and Find Full Text PDF

Growth Factor Stimulation Regimes to Support the Development and Fusion of Cartilage Microtissues.

Tissue Eng Part C Methods

January 2025

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.

Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.

View Article and Find Full Text PDF

Purpose: The retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age-related macular degeneration (AMD) and other retinal degenerative diseases. The introduction of healthy RPE cell cultures into the subretinal space offers a potential treatment strategy. The aim of this study was the long-term culture and characterisation of RPE cells on nanofiber scaffolds.

View Article and Find Full Text PDF

Stem cell therapy for bladder regeneration: A comprehensive systematic review.

Regen Ther

March 2025

Pediatric Urology and Regenerative Medicine Research Center, Gene Cell and Tissue Research Institute Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran.

Tissue engineering has been considered a potential choice for urinary system reconstruction. Here, we aim to a broad spectrum of employed stem cells in bladder regeneration by performing a comprehensive systematic review. In January 2024, we searched Scopus, PubMed, and Embase databases for studies that tried bladder regeneration by tissue engineering using stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!