Bioinspired supramolecular fibers drawn from a multiphase self-assembled hydrogel.

Proc Natl Acad Sci U S A

Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom;

Published: August 2017

Inspired by biological systems, we report a supramolecular polymer-colloidal hydrogel (SPCH) composed of 98 wt % water that can be readily drawn into uniform ([Formula: see text]6-[Formula: see text]m thick) "supramolecular fibers" at room temperature. Functionalized polymer-grafted silica nanoparticles, a semicrystalline hydroxyethyl cellulose derivative, and cucurbit[8]uril undergo aqueous self-assembly at multiple length scales to form the SPCH facilitated by host-guest interactions at the molecular level and nanofibril formation at colloidal-length scale. The fibers exhibit a unique combination of stiffness and high damping capacity (60-70%), the latter exceeding that of even biological silks and cellulose-based viscose rayon. The remarkable damping performance of the hierarchically structured fibers is proposed to arise from the complex combination and interactions of "hard" and "soft" phases within the SPCH and its constituents. SPCH represents a class of hybrid supramolecular composites, opening a window into fiber technology through low-energy manufacturing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5547633PMC
http://dx.doi.org/10.1073/pnas.1705380114DOI Listing

Publication Analysis

Top Keywords

bioinspired supramolecular
4
supramolecular fibers
4
fibers drawn
4
drawn multiphase
4
multiphase self-assembled
4
self-assembled hydrogel
4
hydrogel inspired
4
inspired biological
4
biological systems
4
systems report
4

Similar Publications

Bio-Inspired Highly Stretchable and Ultrafast Autonomous Self-Healing Supramolecular Hydrogel for Multifunctional Durable Self-Powered Wearable Devices.

Small

January 2025

Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.

As skin bioelectronics advances, hydrogel wearable devices have broadened perspectives in environment sensing and health monitoring. However, their application is severely hampered by poor mechanical and self-healing properties, environmental sensitivity, and limited sensory functions. Herein, inspired by the hierarchical structure and unique cross-linking mechanism of hagfish slime, a self-powered supramolecular hydrogel is hereby reported, featuring high stretchability (>2800% strain), ultrafast autonomous self-healing capabilities (electrical healing time: 0.

View Article and Find Full Text PDF

Bioinspired complex cellulose nanorod-architectures: A model for dual-responsive smart carriers.

Carbohydr Polym

March 2025

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada; Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, QC H3A 2A7, Canada. Electronic address:

The synergy between nanomaterials as solid supports and supramolecular concepts has resulted in nanomaterials with hierarchical structure and enhanced functionality. Herein, we developed and investigated innovative supramolecular functionalities arising from the synergy between organic moieties and the preexisting nanoscale soft material backbones. Based on these complex molecular nano-architectures, a new nanorod carbohydrate polymer carrier was designed with bifunctional hairy nanocellulose (BHNC) to reveal dual-responsive advanced drug delivery (ADD).

View Article and Find Full Text PDF

Gaseous Synergistic Self-Assembly and Arraying to Develop Bio-Organic Photocapacitors for Neural Photostimulation.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China.

Bioinspired supramolecular architectonics is attracting increasing interest due to their flexible organization and multifunctionality. However, state-of-the-art bioinspired architectonics generally take place in solvent-based circumstance, thus leading to achieving precise control over the self-assembly remains challenging. Moreover, the intrinsic difficulty of ordering the bio-organic self-assemblies into stable large-scale arrays in the liquid environment for engineering devices severely restricts their extensive applications.

View Article and Find Full Text PDF

Deciphering the most promising strategy for the evolution of cancer patient management remains a multifaceted, challenging affair to date. Additionally, such approaches often lead to microbial infections as side effects, probably due to the compromised immunity of the patients undergoing such treatment. Distinctly, this work delineates a rational combinatorial strategy harnessing stereogenic harmony in the diphenylalanine fragment, tethering it to an amphiphile 12-hydroxy-lauric acid at the N-terminus (compounds -) such that a potential therapeutic could be extracted out from the series.

View Article and Find Full Text PDF

Challenges emerge in the quest for highly efficient and biocompatible coatings to tackle microbial contamination. Here, we propose a bioinspired paradigm combining (-)-epigallocatechin gallate (EGCG) and l-arginine surfactants (LAM) as all-green building blocks for advanced coatings with superior performance. Molecular dynamics simulations reveal the natural assembly process of the EGCG/LAM supramolecular nanoparticles (ELA NPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!