The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates a plethora of target genes. Historically, the AhR has been studied as a regulator of xenobiotic metabolizing enzyme genes, notably cytochrome P4501A1 encoded by CYP1A1, in response to the exogenous prototypical ligand 2,3,7,8-tetrachlorodibenzo--dioxin (TCDD). AhR activity depends on its binding to the xenobiotic response element (XRE) in partnership with the AhR nuclear translocator (Arnt). Recent studies identified stanniocalcin 2 (Stc2) as a novel AhR target gene responsive to the endogenous AhR agonist cinnabarinic acid (CA). CA-dependent AhR-XRE-mediated Stc2 upregulation is responsible for cytoprotection against ectoplasmic reticulum/oxidative stress-induced apoptosis both in vitro and in vivo. Significantly, CA but not TCDD induces expression of Stc2 in hepatocytes. In contrast to TCDD, CA is unable to induce the CYP1A1 gene, thus revealing an AhR agonist-specific mutually exclusive dichotomous transcriptional response. Studies reported here provide a mechanistic explanation for this differential response by identifying an interaction between the AhR and the metastasis-associated protein 2 (MTA2). Moreover, the AhR-MTA2 interaction is CA-dependent and results in MTA2 recruitment to the Stc2 promoter, concomitant with agonist-specific epigenetic modifications targeting histone H4 lysine acetylation. The results demonstrate that histone H4 acetylation is absolutely dependent on CA-induced AhR and MTA2 recruitment to the Stc2 regulatory region and induced Stc2 gene expression, which in turn confers cytoprotection to liver cells exposed to chemical insults.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5553190 | PMC |
http://dx.doi.org/10.1124/mol.117.108878 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!