AI Article Synopsis

  • Research is ongoing to understand Alzheimer's disease (AD) pathology and find early detection biomarkers, with S100β protein emerging as a potential biomarker due to its dual role in neurotrophic and neuroinflammatory processes.
  • Chronic disruption of S100β in AD is not well understood, but studies suggest its expression may be influenced by dietary intake, which is a modifiable risk factor for the disease.
  • The review examines how dietary components like fatty acids and ketone bodies, alongside physical activity, may affect S100β levels, suggesting that a Mediterranean or ketogenic diet could help reduce AD risk.

Article Abstract

There is a significant body of research undertaken in order to elucidate the mechanisms underlying the pathology of Alzheimer's disease (AD), as well as to discover early detection biomarkers and potential therapeutic strategies. One such proposed biomarker is the calcium binding protein S100β, which, depending on its local concentration, is known to exhibit both neurotrophic and neuroinflammatory properties in the central nervous system. At present, relatively little is known regarding the effect of chronic S100β disruption in AD. Dietary intake has been identified as a modifiable risk factor for AD. Preliminary in vitro and animal studies have demonstrated an association between S100β expression and dietary intake which links to AD pathophysiology. This review describes the association of S100β to fatty acids, ketone bodies, insulin, and botanicals as well as the potential impact of physical activity as a lifestyle factor. We also discuss the prospective implications of these findings, including support of the use of a Mediterranean dietary pattern and/or the ketogenic diet as an approach to modify AD risk.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1028415X.2017.1349032DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
8
dietary intake
8
association s100β
8
s100β
5
evaluation dietary
4
dietary lifestyle
4
lifestyle changes
4
changes modifiers
4
modifiers s100β
4
s100β levels
4

Similar Publications

Plasma phosphorylated tau biomarkers open unprecedented opportunities for identifying carriers of Alzheimer's disease pathophysiology in early disease stages using minimally invasive techniques. Plasma p-tau biomarkers are believed to reflect tau phosphorylation and secretion. However, it remains unclear to what extent the magnitude of plasma p-tau abnormalities reflects neuronal network disturbance in the form of cognitive impairment.

View Article and Find Full Text PDF

Background And Objectives: Lipid metabolism in older adults is affected by various factors including biological aging, functional decline, reduced physiologic reserve, and nutrient intake. The dysregulation of lipid metabolism could adversely affect brain health. This study investigated the association between year-to-year intraindividual lipid variability and subsequent risk of cognitive decline and dementia in community-dwelling older adults.

View Article and Find Full Text PDF

Background And Objectives: People living with dementia experience progressive functional decline and increased dependence on caregivers. This study examined the influence of caregivers' dementia health literacy on perceptions of medical care preferences and advanced care planning (ACP) in people living with dementia.

Research Design And Methods: This analysis used data from a cross-sectional survey, "Care Planning for Individuals with Dementia", administered nationwide by Alzheimer's Disease Centers.

View Article and Find Full Text PDF

Quantitative Analysis of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Stabilization in a Neural Model of Alzheimer's Disease (AD).

J Vis Exp

January 2025

Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School;

A method to quantitate the stabilization of Mitochondria-Associated endoplasmic reticulum Membranes (MAMs) in a 3-dimensional (3D) neural model of Alzheimer's disease (AD) is presented here. To begin, fresh human neuro progenitor ReN cells expressing β-amyloid precursor protein (APP) containing familial Alzheimer's disease (FAD) or naïve ReN cells are grown in thin (1:100) Matrigel-coated tissue culture plates. After the cells reach confluency, these are electroporated with expression plasmids encoding red fluorescence protein (RFP)-conjugated mitochondria-binding sequence of AKAP1(34-63) (Mito-RFP) that detects mitochondria or constitutive MAM stabilizers MAM 1X or MAM 9X that stabilize tight (6 nm ± 1 nm gap width) or loose (24 nm ± 3 nm gap width) MAMs, respectively.

View Article and Find Full Text PDF

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells.

Metab Brain Dis

January 2025

Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!