Mycobacterium tuberculosis Rv0164 has previously been identified as a human T-cell antigen that induces significant production of IFN-γ in human peripheral blood mononuclear cells. M. smegmatis MSMEG_0129 shares 59% sequence identity with Rv0164. Based on sequence alignment, both proteins are predicted to be members of the cyclase/dehydrase family, which is part of a large group of enzymes referred to as type II polyketide synthases (PKSs). In biosynthetic pathways mediated by type II PKSs, cyclases catalyze the conversion of linear poly-β-ketones to cyclized intermediates. To date, no mycobacterial type II PKSs have been reported. Here, the goal is to determine whether these proteins adopt similar folds to reported cyclase structures, and to this end MSMEG_0129 was cloned, expressed, purified and crystallized. An X-ray diffraction data set was collected to 1.95 Å resolution from a crystal belonging to space group P6, with unit-cell parameters a = 109.76, b = 109.76, c = 56.5 Å, α = 90, β = 90, γ = 120°. Further crystallographic analysis should establish a basis for investigating the structure and function of this putative mycobacterial type II PKS enzyme.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5505250 | PMC |
http://dx.doi.org/10.1107/S2053230X17008937 | DOI Listing |
Curr Pharm Des
January 2025
Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, P.O Box 13140, Amman 11942, Jordan.
Introduction: The emergence of SARS-CoV-2 and the COVID-19 pandemic highlighted the urgent need for novel antiviral therapies. The main protease (Mpro) of SARS-CoV-2 is a key enzyme in viral replication and a promising therapeutic target.
Methods: This study employed virtual screening approaches to identify potential Mpro inhibitors, leveraging both structure- and ligand-based methods.
Chem Pharm Bull (Tokyo)
January 2025
Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
2α-Functionalization of 1α,25-dihydroxyvitamin D (active vitamin D) A-ring enhances binding affinity for the vitamin D receptor (VDR) and prolongs the half-life in target cells due to gaining resistance to CYP24A1-dependant metabolism. The wide variety of modified A-ring precursor enynes for Trost coupling with CD-ring bromoolefin were synthesized from d-glucose. The A-ring modification provided potent, selective biological activities without calcemic side-effects in vivo; for example, 2α-(3-hydroxypropyl)-19-nor-1α,25-dihydroxyvitamin D (MART-10) exhibits potent antitumor activity (0.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Analytical and Testing Center, Lingnan Normal University, Cunjin Road 29, Chikan District, Zhanjiang, Guangdong Province 524048, People's Republic of China.
Understanding the interactions between small molecules and calf thymus deoxyribonucleic acid (ctDNA) is critical for certain aspects of drug discovery. In this study, three 11H-indeno[1,2-b]quinoxalin-11-one thiosemicarbazones were synthesized and their interaction with ctDNA was examined through various spectroscopic techniques, including ultraviolet (UV) spectroscopy, fluorescence spectroscopy, and circular dichroism (CD) spectrum, and through physicochemical methods, including viscosity measurements. In addition, the effects of these thiosemicarbazone compounds 4a, 4b and 4c on several cancer cell lines were explored.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Chemistry, Diponegoro University, Tembalang, Semarang 50275, Indonesia.
The positioning of the hydroxy group plays a crucial role in the coordination of Schiff bases with copper ions and their antibacterial effectiveness. This potential is an area of interest for future exploration, although no specific studies have been conducted. This study aims to reveal the significance of the positioning of the hydroxy group in the ability of the Schiff base to coordinate with copper ion and its antibacterial efficacy against E.
View Article and Find Full Text PDFSci Rep
January 2025
Multifunctional Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India.
The utilization of single crystals is exponentially growing in optoelectronic devices due to their exceptional benefits, including high phase purity and the absence of grain boundaries. However, achieving single crystals with a porous structure poses significant challenges. In this study, we present a method for fabricating porous single crystals (porous-SC) of CsAgBiBr and related halide double perovskites using an infrared-assisted spin coating technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!