Primary sclerosing cholangitis (PSC) is strongly associated with several human leukocyte antigen (HLA) haplotypes. Due to extensive linkage disequilibrium and multiple polymorphic candidate genes in the HLA complex, identifying the alleles responsible for these associations has proven difficult. We aimed to evaluate whether studying populations of admixed or non-European descent could help in defining the causative HLA alleles. When assessing haplotypes carrying HLA-DRB1*13:01 (hypothesized to specifically increase the susceptibility to chronic cholangitis), we observed that every haplotype in the Scandinavian PSC population carried HLA-DQB1*06:03. In contrast, only 65% of HLA-DRB1*13:01 haplotypes in an admixed/non-European PSC population carried this allele, suggesting that further assessments of the PSC-associated haplotype HLA-DRB1*13:01-DQA1*01:03-DQB1*06:03 in admixed or multi-ethnic populations could aid in identifying the causative allele.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359736PMC
http://dx.doi.org/10.1111/tan.13076DOI Listing

Publication Analysis

Top Keywords

hla haplotypes
8
primary sclerosing
8
sclerosing cholangitis
8
admixed non-european
8
psc population
8
population carried
8
hla
4
haplotypes primary
4
cholangitis patients
4
patients admixed
4

Similar Publications

Genomic Evolution of the SARS-CoV-2 Omicron Variant in Córdoba, Argentina (2021-2022): Analysis of Uncommon and Prevalent Spike Mutations.

Viruses

December 2024

Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina.

Understanding the evolutionary patterns and geographic spread of SARS-CoV-2 variants, particularly Omicron, is essential for effective public health responses. This study focused on the genomic analysis of the Omicron variant in Cordoba, Argentina from 2021 to 2022. Phylogenetic analysis revealed the dominant presence of BA.

View Article and Find Full Text PDF

Major histocompatibility complex (MHC) class-I molecules (or Human Leucocyte Antigen class-I) play a key role in adaptive immunity against cancer. They present specific tumor neoantigens to cytotoxic T cells and provoke an antitumor cytotoxic response. The total or partial loss of HLA molecules can inhibit the immune system's ability to detect and destroy cancer cells.

View Article and Find Full Text PDF

Umbilical cord blood (UCB) represents a valuable graft source in the absence of a human leukocyte antigen (HLA)-matched donor for hematopoietic cell transplantation (HCT). Donor-specific anti-HLA antibodies (DSAs), targeting grafts with mismatched HLA antigens, pose a significant obstacle by increasing the risk of primary graft failure, delayed engraftment, and decreased survival. Existing literature on HLA desensitization has primarily focused on haploidentical transplants, and there is a lack of experience regarding the optimal strategy in UCB transplantation.

View Article and Find Full Text PDF

Deep analysis of the major histocompatibility complex genetic associations using covariate analysis and haploblocks unravels new mechanisms for the molecular etiology of Elite Control in AIDS.

BMC Immunol

January 2025

Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France.

Introduction: We have reanalyzed the genomic data from the International Collaboration for the Genomics of HIV (ICGH), focusing on HIV-1 Elite Controllers (EC).

Methods: A genome-wide association study (GWAS) was performed, comparing 543 HIV-1 EC individuals with 3,272 uninfected controls (CTR) of European ancestry. 8 million single nucleotide polymorphisms (SNPs) and HLA class I and class II gene alleles were imputed to compare EC and CTR.

View Article and Find Full Text PDF

Harnessing global HLA data for enhanced patient matching in iPSC haplobanks.

Cytotherapy

November 2024

Scottish National Blood Transfusion Service, Edinburgh, UK; Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK.

Background: Several countries have either developed or are developing national induced pluripotent stem cell (iPSC) banks of cell lines derived from donors with HLA homozygous genotypes (two identical haplotypes) prevalent in their local populations to provide immune matched tissues and cells to support regenerative medicine therapies. This 'haplobank' approach relies on knowledge of the HLA genotypes of the population to identify the most beneficial haplotypes for patient coverage, and ultimately identify donors or cord blood units carrying two copies of the target haplotype.

Aims: A potentially more efficient alternative to a national bank approach is to assess the haplotypes required to provide global patient coverage and to produce a single, global haplobank.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!