Acute Impact of Selected Pyridoindole Derivatives on Fos Expression in Different Structures of the Rat Brain.

Cell Mol Neurobiol

Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.

Published: January 2018

The impacts of three pyridoindole derivatives (PDs), designated as PD144, PD143, and PD104, which have previously been shown to have antidepressant (PD144) and anxiolytic (PD143, PD104) properties, were investigated on the Fos expressions in 11 different rat brain areas, including the medial prefrontal cortex, striatum, septum, accumbens nucleus (shell, core), bed nucleus of the stria terminalis, hypothalamic paraventricular nucleus, central amygdala, locus coeruleus, dorsal raphe nucleus, and the solitary tract nucleus. Control rats received vehicle, while the other three groups the PDs in a dose of 25 mg/kg/b.w. The animals were transcardially perfused with a fixative 90 min after the treatments. Coronal sections of 40-µm thickness were processed for Fos-immunostaining by avidin-biotin-peroxidase complex and visualized by nickel-intensified diaminobenzidine complex. Fos-labeled sections were counterstained with neuropeptides including corticoliberine (CRH), oxytocin (OXY), vasopressin (AVP), and vasoactive intestinal polypeptide (VIP) and processed for immunofluorescence staining using Alexa Fluor 555 dye. In all the three groups of animals, the upregulation of PDs-induced Fos expression only in 2 of 11 brain areas was investigated, namely, in the hypothalamic paraventricular nucleus (PVN) and the central amygdaloid nucleus (CeA). The other brain structures studied were devoid of Fos expression. Counterstaining of the Fos-labeled CeA-containing sections with VIP antibody revealed that the Fos expression stimulated by the PDs was upregulated in all the CeA subdivisions (lateral, ventral, capsular), except the medial one. Dual immunoprocessings showed Fos/CRH-labeling in both the PVN and the amygdala and Fos/OXY in the PVN. No Fos/AVP colocalizations were seen in the PVN. The obtained data provide the first view on the intracerebral effects of three new PDs derivatives, which effects were restricted only to the PVN and CeA areas. The present data may help to improve our understanding of the impact of the selected PDs on the brain and to anticipate possible behavioral and neuroendocrine consequences.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10571-017-0520-2DOI Listing

Publication Analysis

Top Keywords

fos expression
16
impact selected
8
pyridoindole derivatives
8
rat brain
8
pd143 pd104
8
brain areas
8
hypothalamic paraventricular
8
paraventricular nucleus
8
three groups
8
nucleus
7

Similar Publications

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

Primary hepatocellular carcinoma (PHC) is the sixth most common cancer and the third leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) accounts for 75%-85% of PHC. LARP3 is aberrantly expressed in multiple cancers.

View Article and Find Full Text PDF

Epigenetics in Learning and Memory.

Subcell Biochem

January 2025

Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.

In animals, memory formation and recall are essential for their survival and for adaptations to a complex and often dynamically changing environment. During memory formation, experiences prompt the activation of a selected and sparse population of cells (engram cells) that undergo persistent physical and/or chemical changes allowing long-term memory formation, which can last for decades. Over the past few decades, important progress has been made on elucidating signaling mechanisms by which synaptic transmission leads to the induction of activity-dependent gene regulation programs during the different phases of learning (acquisition, consolidation, and recall).

View Article and Find Full Text PDF

Deep brain stimulation of the anterior cingulate cortex reduces opioid addiction in preclinical studies.

Sci Rep

January 2025

Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 38, Italia Ave., Ghods St, Keshavarz Boulevard, Tehran, Iran.

Substance Use Disorder (SUD) is a medical condition where an individual compulsively misuses drugs or alcohol despite knowing the negative consequences. The anterior cingulate cortex (ACC) has been implicated in various types of SUDs, including nicotine, heroin, and alcohol use disorders. Our research aimed to investigate the effects of deep brain stimulation (DBS) in the ACC as a potential therapeutic approach for morphine use disorder.

View Article and Find Full Text PDF

Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor (GHSR), promotes food intake, other feeding behaviours and stimulates growth hormone (GH) release from the pituitary. Growth hormone secretagogues (GHS), such as GHRP-6 and MK-0677, are synthetic GHSR ligands that activate orexigenic Neuropeptide Y neurons that co-express Agouti-Related Peptide (AgRP) in the arcuate nucleus of the hypothalamus when administered systemically. Systemic GHRP-6 also stimulates GH release in humans and rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!