From perception to action in songbird production: dynamics of a whole loop.

Curr Opin Syst Biol

Physics Department, FCEyN, Universidad de Buenos Aires, and IFIBA Conicet Int. Guiraldes 2160, Pab.1, Ciudad Universitaria, (1428) Buenos Aires, Argentina.

Published: June 2017

Birdsong emerges when a set of highly interconnected brain areas manage to generate a complex output. This consists of precise respiratory rhythms as well as motor instructions to control the vocal organ configuration. In this way, during birdsong production, dedicated cortical areas interact with life-supporting ones in the brainstem, such as the respiratory nuclei. We discuss an integrative view of this interaction together with a widely accepted "top-down" representation of the song system. We also show that a description of this neural network in terms of dynamical systems allows to explore songbird production and processing by generating testable predictions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501299PMC
http://dx.doi.org/10.1016/j.coisb.2017.03.004DOI Listing

Publication Analysis

Top Keywords

songbird production
8
perception action
4
action songbird
4
production dynamics
4
dynamics loop
4
loop birdsong
4
birdsong emerges
4
emerges set
4
set highly
4
highly interconnected
4

Similar Publications

Bridging the fields of cognition and birdsong with corvids.

Curr Opin Neurobiol

January 2025

Animal Physiology, Institute of Neurobiology, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany. Electronic address:

Corvids, readily adaptable across social and ecological contexts, successfully inhabit almost the entire world. They are seen as highly intelligent birds, and current research examines their cognitive abilities. Despite being songbirds with a complete 'song system', corvids have historically received less attention in studies of song production, learning, and perception compared to non-corvid songbirds.

View Article and Find Full Text PDF

Background: Understanding the neural basis of behavior requires insight into how different brain systems coordinate with each other. Existing connectomes for various species have highlighted brain systems essential to various aspects of behavior, yet their application to complex learned behaviors remains limited. Research on vocal learning in songbirds has extensively focused on the vocal control network, though recent work implicates a variety of circuits in contributing to important aspects of vocal behavior.

View Article and Find Full Text PDF

Sensory experience during development has lasting effects on perception and neural processing. Exposing juvenile animals to artificial stimuli influences the tuning and functional organization of the auditory cortex, but less is known about how the rich acoustical environments experienced by vocal communicators affect the processing of complex vocalizations. Here, we show that in zebra finches (), a colonial-breeding songbird species, exposure to a naturalistic social-acoustical environment during development has a profound impact on auditory perceptual behavior and on cortical-level auditory responses to conspecific song.

View Article and Find Full Text PDF

Zebra finches undergo a gradual refinement of their vocalizations, transitioning from variable juvenile songs to the stereotyped song of adulthood. To investigate the neural mechanisms underlying song crystallization-a critical phase in this developmental process-we performed intracellular recordings in HVC (a premotor nucleus essential for song learning and production) of juvenile birds. We then compared these recordings to previously published electrophysiological data from adult birds.

View Article and Find Full Text PDF

Solar energy is growing at unprecedented rates, with the most development projected to occur in areas with high concentrations of threatened and endangered species, yet its effects on wildlife remain largely unexplored. In 2014 and 2015 we examined the influence of a solar facility on avian community occupancy in the Nutt grasslands of south-central New Mexico. We examined the effect of distance to solar facility as well as other habitat covariates, including vegetation structure and orthopteran abundance, on community occupancy and occupancy trends for individual species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!