Multiple structural transitions driven by spin-phonon couplings in a perovskite oxide.

Sci Adv

Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.

Published: June 2017

Spin-phonon interactions are central to many interesting phenomena, ranging from superconductivity to magnetoelectric effects. However, they are believed to have a negligible influence on the structural behavior of most materials. For example, magnetic perovskite oxides often undergo structural transitions accompanied by magnetic signatures whose minuteness suggests that the underlying spin-phonon couplings are largely irrelevant. We present an exception to this rule, showing that novel effects can occur as a consequence. Our first-principles calculations reveal that spin-phonon interactions are essential to reproduce the experimental observations on the phase diagram of magnetoelectric multiferroic BiCoO. Moreover, we predict that, under compression, these couplings lead to an unprecedented temperature-driven double-reentrant sequence of ferroelectric transitions. We propose how to modify BiCoO via chemical doping to reproduce such marked effects under ambient conditions, thereby yielding useful multifunctionality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493420PMC
http://dx.doi.org/10.1126/sciadv.1700288DOI Listing

Publication Analysis

Top Keywords

structural transitions
8
spin-phonon couplings
8
spin-phonon interactions
8
multiple structural
4
transitions driven
4
spin-phonon
4
driven spin-phonon
4
couplings perovskite
4
perovskite oxide
4
oxide spin-phonon
4

Similar Publications

Type-II multiferroicity from non-collinear spin order is recently explored in the van der Waals material NiI. Despite the importance for improper ferroelectricity, the microscopic mechanism of the helimagnetic order remains poorly understood. Here, the magneto-structural phases of NiI are investigated using resonant magnetic X-ray scattering (RXS) and X-ray diffraction.

View Article and Find Full Text PDF

Exploring Brain Imaging and Genetic Risk Factors in Different Progression States of Alzheimer's Disease Through OSnetNMF-Based Methods.

J Mol Neurosci

January 2025

Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.

Alzheimer's disease (AD) is a neurodegenerative disease with no effective treatment, often preceded by mild cognitive impairment (MCI). Multimodal imaging genetics integrates imaging and genetic data to gain a deeper understanding of disease progression and individual variations. This study focuses on exploring the mechanisms that drive the transition from normal cognition to MCI and ultimately to AD.

View Article and Find Full Text PDF

Structural insights into RNA cleavage by PIWI Argonaute.

Nature

January 2025

Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.

Argonaute proteins are categorized into AGO and PIWI clades. Across most animal species, AGO-clade proteins are widely expressed in various cell types, and regulate normal gene expression. By contrast, PIWI-clade proteins predominantly function during gametogenesis to suppress transposons and ensure fertility.

View Article and Find Full Text PDF

Hippocampal circuits in the brain enable two distinct cognitive functions: the construction of spatial maps for navigation, and the storage of sequential episodic memories. Although there have been advances in modelling spatial representations in the hippocampus, we lack good models of its role in episodic memory. Here we present a neocortical-entorhinal-hippocampal network model that implements a high-capacity general associative memory, spatial memory and episodic memory.

View Article and Find Full Text PDF

Regulating carbon hybridization states lies at the heart of engineering carbon materials with tailored properties but orchestrating the sequential transition across three states has remained elusive. Here, we visiualize stepwise evolution in carbon hybridizations from sp³ to sp² and to sp states via dehydrogenation and elimination reactions of methylcyano-functionalized molecules on surfaces. Utilizing scanning probing microscopy, we distinguish three distinct carbon-carbon bond types within polymers induced by annealing at elevated temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!