Salar de Huasco, defined as a polyextreme environment, is a high altitude saline wetland in the Chilean Altiplano (3800 m.a.s.l.), permanently exposed to the highest solar radiation doses registered in the world. We present here the first comparative proteomics study of a photoheterotrophic bacterium, sp., isolated from this remote and hostile habitat. We developed an innovative experimental approach using different sources of radiation ( sunlight and UVB lamps), cut-off filters (Mylar, Lee filters) and a high-throughput, label-free quantitative proteomics method to comprehensively analyze the effect of seven spectral bands on protein regulation. A hierarchical cluster analysis of 40 common proteins revealed that all conditions containing the most damaging UVB radiation induced similar pattern of protein regulation compared with UVA and visible light spectral bands. Moreover, it appeared that the cellular adaptation of sp. to osmotic stress encountered in the hypersaline environment from which it was originally isolated, might further a higher resistance to damaging UV radiation. Indeed, proteins involved in the synthesis and transport of key osmoprotectants, such as glycine betaine and inositol, were found in very high abundance under UV radiation compared to the dark control, suggesting the function of osmolytes as efficient reactive oxygen scavengers. Our study also revealed a RecA-independent response and a tightly regulated network of protein quality control involving proteases and chaperones to selectively degrade misfolded and/or damaged proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5483449 | PMC |
http://dx.doi.org/10.3389/fmicb.2017.01173 | DOI Listing |
Methods Mol Biol
January 2025
The Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.
The biochemical makeup of any organism provides insight into key factors regarding its biological functions. These factors can be explored using proteomics, which allows us to obtain a snapshot of the protein content and abundance in an organism, cell type or sub-cellular compartment. Here, we describe proteomic methodologies that can be used to dissect the biochemical mechanism of phytopathogenicity in oomycetes.
View Article and Find Full Text PDFProteomes
November 2024
Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA.
As the primary innate immune cells of the brain, microglia play a key role in various homeostatic and disease-related processes. To carry out their numerous functions, microglia adopt a wide range of phenotypic states. The proteomic landscape represents a more accurate molecular representation of these phenotypes; however, microglia present unique challenges for proteomic analysis.
View Article and Find Full Text PDFCurr Issues Mol Biol
November 2024
Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.
Hepatocellular carcinoma (HCC) is the most common form of liver cancer in humans, with an increasing incidence worldwide. The current study aimed to explore the molecular mechanisms that inhibit the proliferation of HepG2 cells, a hepatoblastoma-derived cell line. MSC-derived exosomes (UC-MSCs) were prepared with a median particle size (N50) of 135.
View Article and Find Full Text PDFFront Reprod Health
December 2024
Glickman Urological Institute, Cleveland Clinic Foundation, Cleveland, OH, United States.
Research Question: Male infertility accounts for almost half of all infertility cases worldwide, with idiopathic male infertility accounting for up to 30% of the cases. Sperm proteomics has revealed critical molecular pathway changes in men with infertility. However, the sperm mitochondrial proteome remains poorly understood.
View Article and Find Full Text PDFFront Cell Neurosci
December 2024
Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
Introduction: Abnormal intracellular accumulation of Tau aggregates is a hallmark of Alzheimer's disease (AD) and other Tauopathies, such as Frontotemporal dementia (FTD). Tau deposits primarily affect neurons, but evidence indicates that glial cells may also be affected and contribute distinctively to disease progression. Cells can respond to toxic insults by orchestrating global changes in posttranslational modifications of their proteome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!