To evaluate the impact of pig farm management on the genetic diversity and on the virulence of , we characterized isolates from 19 organic pig farms (62 isolates) and from 24 conventional pig farms (58 isolates). The 120 isolates were typed using pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) and the presence of nine virulence genes was screened using real-time PCR. The capacity of adhesion and invasion of 61 isolates (32 from organic and 29 from conventional farms) were then tested on human intestinal cells. A total of 59 PFGE types and of 50 sequence types (STs) were identified. Twelve PFGE types and nine STs, accounting for 34 and 41.6% of the isolates, respectively, were common between the two production systems with ST854 dominating (18.3% of the isolates). Twenty-nine PFGE types and 25 STs were only found in isolates from organic farms, and 18 PFGE types and 16 STs from conventional farms. No significant differences were found in diversity despite the differences in rearing systems, except at the locus level for the , and genes. All isolates, regardless of their origin, carried the , and genes and more than 95% of the isolates carried the and genes. No significant differences were found in pathogenicity between the two farming systems. The pathogenicity of the isolates was low compared to control strains tested. The plasmid gene was detected in only 13 isolates from organic farms; these isolates showed greater invasion capacity than those without this gene. Our study indicates that pig farm management does not significantly affect the diversity and the virulence of isolated from pigs. The common genotypes between conventional and organic farms may indicate that some genotypes are adapted to pigs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5483432 | PMC |
http://dx.doi.org/10.3389/fmicb.2017.01016 | DOI Listing |
Inorg Chem
January 2025
Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China.
Two novel 3D inorganic-organic hybrids based on [VO]/[VO] clusters, [Cu(bbpy)(VO)]·3HO () and [CuAg(pty)(VO)]·HO () (bbpy = 3,5-bis(1-benzimidazole) pyridine, pty = 4'-(4″-pyridyl)-2,2':6',2″-terpyridine), were isolated in the same POV/Cu/N-heterocycle ligand reaction systems. Hybrids and possess novel three-dimensional bimetallic frameworks derived from [VO]/[VO] clusters and Cu-organic complexes. In , bbpy ligands are grafted by Cu to a grid ribbon 2D sheet, which are connected with benzene-like [VO] to yield a 3D framework.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States.
The nuclear pore complex (NPC) is the proteinous nanopore that solely regulates molecular transport between the nucleus and cytoplasm of a eukaryotic cell. Hypothetically, the NPC utilizes the hydrophobic barriers based on the repeats of phenylalanine-glycine (FG) units to selectively and efficiently transport macromolecules. Herein, we quantitatively assess the hydrophobicity of transport barriers confined in the nanopore by applying scanning electrochemical microscopy (SECM).
View Article and Find Full Text PDFElife
January 2025
Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Junior Research Group Synthetic Microbiology, Jena, Germany.
Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene , which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes.
View Article and Find Full Text PDFJBMR Plus
February 2025
Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil.
Mineralizing cells release a special class of extracellular vesicles known as matrix vesicles (MV), crucial for bone mineralization. Following their release, MV anchor to the extracellular matrix (ECM), where their highly specialized enzymatic machinery facilitates the formation of seed mineral within the MV's lumen, subsequently releasing it onto the ECM. However, how MV propagate mineral onto the collagenous ECM remains unclear.
View Article and Find Full Text PDFN Biotechnol
January 2025
Department for Molecular Microbiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands; Department of Bioengineering, Imperial College London, South Kensington Campus, SSW7 2AZ, London, UK. Electronic address:
Fungal pathogens pose a threat to human health and food security. Few antifungals are available and resistance to all has been reported. Novel strategies to control plant and human pathogens as well as food spoilers are urgently required.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!