MiR-429 functions as a tumor suppressor and has been observed in multiple types of cancer, but the effects and mechanisms of miR-429 in osteosarcoma are poorly understood. This study is performed to evaluate the functions of miR-429 in the progression of osteosarcoma. Firstly, the miR-429 expression in osteosarcoma tissues and osteosarcoma cells was detected using real time PCR, and the relationship between miR-429 expression and overall survival of osteosarcoma was analyzed. Secondly, the effects of miR-429 on the migration, invasion, proliferation and apoptosis of osteosarcoma cells were evaluated using transwell assay, wound-healing assay, CCK-8 assay and flow cytometry, respectively. Proteins related to epithelial-mesenchymal transition (EMT), E-cadherin, Vimentin, N-cadherin and Snail, were also detected using Western blot. Finally, the target gene of miR-429 in osteosarcoma was predicted and verified using dual luciferase assay and the expression correlation between them was analyzed using Pearson's correlation. MiR-429 was down-regulated in osteosarcoma tissues and osteosarcoma cells; the expression level of miR-429 was associated with the prognosis of osteosarcoma. High level of miR-429 in osteosarcoma cells significantly suppressed the migration, invasion and proliferation of cells but induced cells apoptosis. Furthermore, high level of miR-429 in osteosarcoma cells obviously increased the expression of E-cadherin protein but decreased the expression of Vimentin, N-Cadherin and Snail proteins. EMT inducer ZEB1 was the target gene of miR-429 and the expression of ZEB1 was negatively related to the miR-429 expression in osteosarcoma. In conclusion, miR-429 may functions as a tumor suppressor and be down-regulated in osteosarcoma. MiR-429 may suppress the progression and metastasis of osteosarcoma by down-regulating the ZEB1 expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491908PMC
http://dx.doi.org/10.17179/excli2017-258DOI Listing

Publication Analysis

Top Keywords

osteosarcoma cells
20
mir-429
16
osteosarcoma
16
mir-429 osteosarcoma
16
mir-429 expression
16
level mir-429
12
expression
9
progression metastasis
8
metastasis osteosarcoma
8
mir-429 functions
8

Similar Publications

Integrins identified as potential prognostic markers in osteosarcoma through multi-omics and multi-dataset analysis.

NPJ Precis Oncol

January 2025

Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China.

Osteosarcoma represents 20% of primary malignant bone tumors globally. Assessing its prognosis is challenging due to the complex roles of integrins in tumor development and metastasis. This study utilized 209,268 osteosarcoma cells from the GEO database to identify integrin-associated genes using advanced analysis methods.

View Article and Find Full Text PDF

This study aims to synthesize a new localized drug delivery system of bioglass, polyvinyl alcohol (PVA), cellulose (CNC), and sodium alginate (SA) beads as a carrier for methotrexate (MTX) drugs for the treatment of osteosarcoma. Methotrexate /Bioglass-loaded Polyvinyl/Cellulose/Sodium alginate biocomposite beads were prepared via the dropwise method with different concentrations of (65%SiO-30%CaO- 5%PO) bioglass. Samples were named B0, S0, S1, S2, and S3, respectively.

View Article and Find Full Text PDF

Background: () is associated with a variety of malignancies. However, the role of in osteosarcoma and its underlying mechanism are not yet fully understood. This study aimed to explore the role and the mechanism of in osteosarcoma.

View Article and Find Full Text PDF

Single-molecule toxicogenomics: Optical genome mapping of DNA-damage in nanochannel arrays.

DNA Repair (Amst)

January 2025

School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Biomedical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel. Electronic address:

Quantitative genomic mapping of DNA damage may provide insights into the underlying mechanisms of damage and repair. Sequencing based approaches are bound to the limitations of PCR amplification bias and read length which hamper both the accurate quantitation of damage events and the ability to map them to structurally complex genomic regions. Optical Genome mapping in arrays of parallel nanochannels allows physical extension and genetic profiling of millions of long genomic DNA fragments, and has matured to clinical utility for characterization of complex structural aberrations in cancer genomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!