The boson peak, which represents an excess of vibrational states compared to Debye's prediction at low frequencies, has been studied extensively, and yet, its nature remains controversial. In this study, we focus on understanding the nature of the boson peak based on the spatial heterogeneity of modulus fluctuations using a simple model system of a highly jammed two-dimensional granular material. Despite the simplicity of our system, we find that the boson peak in our two-dimensional system shows a shape very similar to that of three-dimensional molecular glasses when approaching their boson peak frequencies. Our finding indicates a strong connection between the boson peak and the spatial heterogeneity of shear modulus fluctuations.The low-frequency collective vibrational modes, known as the boson peak, characterize many glasses at low temperature, yet its origin remains elusive. Zhang et al. show a correlation between the boson peak and the spatial heterogeneity of shear modulus fluctuation in a two-dimensional granular system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503991PMC
http://dx.doi.org/10.1038/s41467-017-00106-5DOI Listing

Publication Analysis

Top Keywords

boson peak
28
spatial heterogeneity
12
vibrational modes
8
two-dimensional granular
8
peak spatial
8
heterogeneity shear
8
shear modulus
8
boson
7
peak
7
experimental studies
4

Similar Publications

Evidence for a metal-bosonic insulator-superconductor transition in compressed sulfur.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.

The abrupt drop of resistance to zero at a critical temperature is a key signature of the current paradigm of the metal-superconductor transition. However, the emergence of an intermediate bosonic insulating state characterized by a resistance peak preceding the onset of the superconducting transition has challenged this traditional understanding. Notably, this phenomenon has been predominantly observed in disordered or chemically doped low-dimensional systems, raising intriguing questions about the generality of the effect and its underlying fundamental physics.

View Article and Find Full Text PDF

Amber is a fragile (in Angell's classification) natural glass that has performed maturation processes over geological time. The terahertz dynamics of Baltic amber that was about 40 million years old were studied by terahertz time-domain spectroscopy (THz-TDS) in the frequency range of 0.2 and 6.

View Article and Find Full Text PDF
Article Synopsis
  • Physical vapor deposition creates organic glasses with high kinetic stability, which can slowly transition to supercooled liquids when heated.
  • The study investigates the rejuvenation of vapor-deposited methyl-m-toluate glasses after 6 hours of annealing at a temperature close to their glass transition temperature (Tg), finding moderate glasses show rejuvenation, while highly stable glasses do not show expected changes.
  • Surprisingly, annealing lead to increased storage component of dielectric susceptibility in stable glasses without increases in the loss component, indicating short-term rejuvenation affects high-frequency relaxation processes; simulations showed no rejuvenation in similarly stable glasses within the same time frame.
View Article and Find Full Text PDF

Boson peaks are observed in glassy materials due to atom, spin, and strain disordered states that provide additional vibration modes at low temperatures. However, Boson peaks have not been observed in pure dipole disordered systems without structural disorder. Here, we report the observation of a Boson-peak-like hump in specific heat near 7 K in organic-inorganic hybrid crystal MA_{4}InCl_{7}(MA=CH_{3}NH_{3}).

View Article and Find Full Text PDF

We show that the existence of clouds of ultralight particles surrounding black holes during their cosmological history as members of a binary system can leave a measurable imprint on the distribution of masses and orbital eccentricities observable with future gravitational-wave detectors. Notably, we find that for nonprecessing binaries with chirp masses M≲10M_{⊙}, formed exclusively in isolation, larger-than-expected values of the eccentricity, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!