The boson peak, which represents an excess of vibrational states compared to Debye's prediction at low frequencies, has been studied extensively, and yet, its nature remains controversial. In this study, we focus on understanding the nature of the boson peak based on the spatial heterogeneity of modulus fluctuations using a simple model system of a highly jammed two-dimensional granular material. Despite the simplicity of our system, we find that the boson peak in our two-dimensional system shows a shape very similar to that of three-dimensional molecular glasses when approaching their boson peak frequencies. Our finding indicates a strong connection between the boson peak and the spatial heterogeneity of shear modulus fluctuations.The low-frequency collective vibrational modes, known as the boson peak, characterize many glasses at low temperature, yet its origin remains elusive. Zhang et al. show a correlation between the boson peak and the spatial heterogeneity of shear modulus fluctuation in a two-dimensional granular system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503991 | PMC |
http://dx.doi.org/10.1038/s41467-017-00106-5 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
The abrupt drop of resistance to zero at a critical temperature is a key signature of the current paradigm of the metal-superconductor transition. However, the emergence of an intermediate bosonic insulating state characterized by a resistance peak preceding the onset of the superconducting transition has challenged this traditional understanding. Notably, this phenomenon has been predominantly observed in disordered or chemically doped low-dimensional systems, raising intriguing questions about the generality of the effect and its underlying fundamental physics.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Materials Science, University of Tsukuba, Tsukuba 305-8573, Ibaraki, Japan.
Amber is a fragile (in Angell's classification) natural glass that has performed maturation processes over geological time. The terahertz dynamics of Baltic amber that was about 40 million years old were studied by terahertz time-domain spectroscopy (THz-TDS) in the frequency range of 0.2 and 6.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA.
Phys Rev Lett
November 2024
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
Boson peaks are observed in glassy materials due to atom, spin, and strain disordered states that provide additional vibration modes at low temperatures. However, Boson peaks have not been observed in pure dipole disordered systems without structural disorder. Here, we report the observation of a Boson-peak-like hump in specific heat near 7 K in organic-inorganic hybrid crystal MA_{4}InCl_{7}(MA=CH_{3}NH_{3}).
View Article and Find Full Text PDFPhys Rev Lett
September 2024
Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany.
We show that the existence of clouds of ultralight particles surrounding black holes during their cosmological history as members of a binary system can leave a measurable imprint on the distribution of masses and orbital eccentricities observable with future gravitational-wave detectors. Notably, we find that for nonprecessing binaries with chirp masses M≲10M_{⊙}, formed exclusively in isolation, larger-than-expected values of the eccentricity, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!