System memory consolidation is conceptualized as an active process whereby newly encoded memory representations are strengthened through selective memory reactivation during sleep. However, our learning experience is highly overlapping in content (i.e., shares common elements), and memories of these events are organized in an intricate network of overlapping associated events. It remains to be explored whether and how selective memory reactivation during sleep has an impact on these overlapping memories acquired during awake time. Here, we test in a group of adult women and men the prediction that selective memory reactivation during sleep entails the reactivation of associated events and that this may lead the brain to adaptively regulate whether these associated memories are strengthened or pruned from memory networks on the basis of their relative associative strength with the shared element. Our findings demonstrate the existence of efficient regulatory neural mechanisms governing how complex memory networks are shaped during sleep as a function of their associative memory strength. Numerous studies have demonstrated that system memory consolidation is an active, selective, and sleep-dependent process in which only subsets of new memories become stabilized through their reactivation. However, the learning experience is highly overlapping in content and thus events are encoded in an intricate network of related memories. It remains to be explored whether and how memory reactivation has an impact on overlapping memories acquired during awake time. Here, we show that sleep memory reactivation promotes strengthening and weakening of overlapping memories based on their associative memory strength. These results suggest the existence of an efficient regulatory neural mechanism that avoids the formation of cluttered memory representation of multiple events and promotes stabilization of complex memory networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596642PMC
http://dx.doi.org/10.1523/JNEUROSCI.3537-16.2017DOI Listing

Publication Analysis

Top Keywords

memory reactivation
24
reactivation sleep
16
overlapping memories
16
memory
14
selective memory
12
memory networks
12
reactivation
8
promotes strengthening
8
strengthening weakening
8
weakening overlapping
8

Similar Publications

Single-cell RNA-seq identifies protracted mouse germline X chromosome reactivation dynamics directed by a PRC2-dependent mechanism.

Dev Cell

January 2025

King's College London, Centre for Gene Therapy and Regenerative Medicine, School of Basic & Medical Biosciences, Faculty of Life Sciences and Medicine, London, UK; King's College London, Guy's Hospital Assisted Conception Unit, Department of Women and Children's Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, London, UK. Electronic address:

Female primordial germ cells (PGCs) undergo X chromosome reactivation (XCR) during genome-wide reprogramming. XCR kinetics and dynamics are poorly understood at a molecular level. Here, we apply single-cell RNA sequencing and chromatin profiling on germ cells from F mouse embryos, performing a precise appraisal of XCR spanning from migratory-stage PGCs to gonadal germ cells.

View Article and Find Full Text PDF

Shaping the structural dynamics of motor learning through cueing during sleep.

Sleep

January 2025

UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).

View Article and Find Full Text PDF

Fixed drug eruption (FDE) is a type of drug-induced skin inflammation characterized by the recurrence of lesions in the same region following repeated exposure to the causative drug. FDE typically presents as localized spots or plaques without systemic symptoms; however, it can manifest in other forms, such as blisters and papules. In FDE, effector memory CD8-positive T cells that remain dormant in the basal layer after a previous inflammation are reactivated upon re-exposure to the causative drug, leading to the development of erythema at the same sites.

View Article and Find Full Text PDF

Memory reconsolidation interventions offer an exciting alternative to exposure treatment because they may target fear memories directly, thereby preventing relapse. A previous reconsolidation intervention for spider fear abruptly reduced avoidance behaviour, whereas changes in self-reported fear followed later. In this pre-registered placebo-controlled study, we first aimed to conceptually replicate these effects in spider phobia.

View Article and Find Full Text PDF

Background: Immunothrombosis is the process by which the coagulation cascade interacts with the innate immune system to control infection. However, the formation of clots within the brain vasculature can be detrimental to the host. Recent work has demonstrated that Toxoplasma gondii infects and lyses central nervous system (CNS) endothelial cells that form the blood-brain barrier (BBB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!